A new look at the automatic mapping between Arabic distinctive phonetic features and acoustic cues

Y. Alotaibi, Y. Seddiq, A. Meftah, S. Selouani, M. S. Yakoub
{"title":"A new look at the automatic mapping between Arabic distinctive phonetic features and acoustic cues","authors":"Y. Alotaibi, Y. Seddiq, A. Meftah, S. Selouani, M. S. Yakoub","doi":"10.1109/TSP.2017.8076007","DOIUrl":null,"url":null,"abstract":"In this paper, the multidimensional phonological feature structure of Arabic is investigated. Our goal is to assess the performance of statistical and connectionist approaches in performing the complex mappings between distinctive phonetic features (DPF) and associated acoustic cues. The present study explores the mapping between 29 phonological voicing, place, and manner features and Mel-frequency acoustic cues. For this purpose, three machine-learning techniques are deployed: Deep Belief Networks (DBN), Multilayer Perceptron (MLP), and Hidden Markov Models (HMM). The three techniques show satisfactory acoustic-phonetic mapping performance and indicate that couple of Arabic DPF elements such as affricatives, alveopalatals, labiodentals, lateral, palatal, pharyngeal, rounded, and uvular have a strong correlation with the acoustic information. The implications of these results on Arabic phonological contrasts are discussed.","PeriodicalId":256818,"journal":{"name":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 40th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2017.8076007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the multidimensional phonological feature structure of Arabic is investigated. Our goal is to assess the performance of statistical and connectionist approaches in performing the complex mappings between distinctive phonetic features (DPF) and associated acoustic cues. The present study explores the mapping between 29 phonological voicing, place, and manner features and Mel-frequency acoustic cues. For this purpose, three machine-learning techniques are deployed: Deep Belief Networks (DBN), Multilayer Perceptron (MLP), and Hidden Markov Models (HMM). The three techniques show satisfactory acoustic-phonetic mapping performance and indicate that couple of Arabic DPF elements such as affricatives, alveopalatals, labiodentals, lateral, palatal, pharyngeal, rounded, and uvular have a strong correlation with the acoustic information. The implications of these results on Arabic phonological contrasts are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿拉伯语独特的语音特征和声学线索之间的自动映射的新观点
本文对阿拉伯语的多维音位特征结构进行了研究。我们的目标是评估统计和连接主义方法在执行不同语音特征(DPF)和相关声学线索之间的复杂映射时的性能。本研究探讨了29个语音、地点和方式特征与mel频率声学线索之间的映射关系。为此,部署了三种机器学习技术:深度信念网络(DBN)、多层感知器(MLP)和隐马尔可夫模型(HMM)。这三种方法显示了令人满意的声学-语音映射性能,并表明阿拉伯语DPF的几个元素,如词缀、肺泡音、唇音、侧音、腭音、咽音、圆形和小舌音与声学信息有很强的相关性。讨论了这些结果对阿拉伯语语音对比的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy efficient CM2M communications in healthcare systems An efficient FPGA-Based architecture for convolutional neural networks Usability study of ITU-T P.1201 Amd.2 standard for video quality estimation in HTTP-Based online streaming services A high speed middle accuracy 9-bit SAR-ADC in 0.35-μm CMOS for sensor application in automotive industry High impedance monopole antenna for indoor terahertz wireless communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1