Cost-Effective Resource Allocation for Deploying Pub/Sub on Cloud

Vinay Setty, R. Vitenberg, Gunnar Kreitz, G. Urdaneta, M. Steen
{"title":"Cost-Effective Resource Allocation for Deploying Pub/Sub on Cloud","authors":"Vinay Setty, R. Vitenberg, Gunnar Kreitz, G. Urdaneta, M. Steen","doi":"10.1109/ICDCS.2014.63","DOIUrl":null,"url":null,"abstract":"Publish/subscribe (pub/sub) is a popular communication paradigm in the design of large-scale distributed systems. A fundamental challenge in deploying pub/sub systems on a data center or a cloud infrastructure is efficient and cost-effective resource allocation that would allow delivery of notifications to all subscribers. In this paper, we provide answers to the following three fundamental questions: Given a pub/sub workload, (1) what is the minimum amount of resources needed to satisfy all the subscribers, (2) what is a cost-effective way to allocate resources for the given workload, and (3) what is the cost of hosting it on a public Infrastructure-as-a-Service (IaaS) provider like Amazon EC2. To answer these questions, we formulate a problem coined Minimum Cost Subscriber Satisfaction (MCSS). We prove MCSS to be NP-hard and provide an efficient heuristic solution based on a combination of optimizations. We evaluate the solution experimentally using real traces from Spotify and Twitter along with a pricing model from Amazon. We show the impact of each optimization using a naive solution as the baseline. Using a variety of practical scenarios for each dataset, we also show that our solution scales well for millions of subscribers and runs fast.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Publish/subscribe (pub/sub) is a popular communication paradigm in the design of large-scale distributed systems. A fundamental challenge in deploying pub/sub systems on a data center or a cloud infrastructure is efficient and cost-effective resource allocation that would allow delivery of notifications to all subscribers. In this paper, we provide answers to the following three fundamental questions: Given a pub/sub workload, (1) what is the minimum amount of resources needed to satisfy all the subscribers, (2) what is a cost-effective way to allocate resources for the given workload, and (3) what is the cost of hosting it on a public Infrastructure-as-a-Service (IaaS) provider like Amazon EC2. To answer these questions, we formulate a problem coined Minimum Cost Subscriber Satisfaction (MCSS). We prove MCSS to be NP-hard and provide an efficient heuristic solution based on a combination of optimizations. We evaluate the solution experimentally using real traces from Spotify and Twitter along with a pricing model from Amazon. We show the impact of each optimization using a naive solution as the baseline. Using a variety of practical scenarios for each dataset, we also show that our solution scales well for millions of subscribers and runs fast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在云上部署Pub/Sub的经济有效的资源分配
发布/订阅(pub/sub)是大规模分布式系统设计中流行的通信模式。在数据中心或云基础设施上部署发布/订阅系统的一个基本挑战是高效且经济地分配资源,以便向所有订阅者交付通知。在本文中,我们提供了以下三个基本问题的答案:给定一个发布/订阅工作负载,(1)满足所有订阅者所需的最小资源量是多少,(2)为给定工作负载分配资源的经济有效方法是什么,以及(3)将其托管在公共基础设施即服务(IaaS)提供商(如Amazon EC2)上的成本是多少。为了回答这些问题,我们提出了一个问题,即最低成本用户满意度(MCSS)。我们证明了MCSS是np困难的,并提供了一个基于优化组合的有效启发式解决方案。我们使用Spotify和Twitter的真实痕迹以及亚马逊的定价模型对解决方案进行了实验评估。我们使用一个简单的解决方案作为基线来展示每个优化的影响。通过对每个数据集使用各种实际场景,我们还表明,我们的解决方案可以很好地扩展到数百万订阅者,并且运行速度很快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Privacy-Preserving Image-Centric Social Discovery Community-Based Identity Validation on Online Social Networks Providing Efficient Privacy-Aware Incentives for Mobile Sensing Learning from the Past: Intelligent On-Line Weather Monitoring Based on Matrix Completion Columbus: Configuration Discovery for Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1