{"title":"User oriented language model for face detection","authors":"Daesik Jang, G. Miller, S. Fels, S. Oldridge","doi":"10.1109/POV.2011.5712364","DOIUrl":null,"url":null,"abstract":"This paper provides a novel approach for a user oriented language model for face detection. Even though there are many open source or commercial libraries to solve the problem of face detection, they are still hard to use because they require specific knowledge on details of algorithmic techniques. This paper proposes a high-level language model for face detection with which users can develop systems easily and even without specific knowledge on face detection theories and algorithms. Important conditions are firstly considered to categorize the large problem space of face detection. The conditions identified here are then represented as expressions in terms of a language model so that developers can use them to express various problems. Once the conditions are expressed by users, the proposed associated interpreter interprets the conditions to find and organize the best algorithms to solve the represented problem with corresponding conditions. We show a proof-of-concept implementation and some test and analyze example problems to show the ease of use and usability.","PeriodicalId":197184,"journal":{"name":"2011 IEEE Workshop on Person-Oriented Vision","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Person-Oriented Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POV.2011.5712364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
This paper provides a novel approach for a user oriented language model for face detection. Even though there are many open source or commercial libraries to solve the problem of face detection, they are still hard to use because they require specific knowledge on details of algorithmic techniques. This paper proposes a high-level language model for face detection with which users can develop systems easily and even without specific knowledge on face detection theories and algorithms. Important conditions are firstly considered to categorize the large problem space of face detection. The conditions identified here are then represented as expressions in terms of a language model so that developers can use them to express various problems. Once the conditions are expressed by users, the proposed associated interpreter interprets the conditions to find and organize the best algorithms to solve the represented problem with corresponding conditions. We show a proof-of-concept implementation and some test and analyze example problems to show the ease of use and usability.