Rich feature hierarchies for cell detecting under phase contrast microscopy images

Fan Deng, Haigen Hu, Shengyong Chen, Q. Guan, Yijie Zou
{"title":"Rich feature hierarchies for cell detecting under phase contrast microscopy images","authors":"Fan Deng, Haigen Hu, Shengyong Chen, Q. Guan, Yijie Zou","doi":"10.1109/ICICIP.2015.7388195","DOIUrl":null,"url":null,"abstract":"R-CNN (region-convolutional neural network) has recently achieved very outstanding results in variety of visual detecting fields, and its function of object-proposal-generation can achieve effective training models by using as small samples as possible in the field of machine learning. In this paper, a modified R-CNN is proposed and applied to detect cells under phase contrast microscopy images by adopting multiple object-proposal-generations instead of a single one to extract candidate regions. The results show that the proposed method can obtain better performance than the traditional method by using a single object-proposal-generation.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"68 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

R-CNN (region-convolutional neural network) has recently achieved very outstanding results in variety of visual detecting fields, and its function of object-proposal-generation can achieve effective training models by using as small samples as possible in the field of machine learning. In this paper, a modified R-CNN is proposed and applied to detect cells under phase contrast microscopy images by adopting multiple object-proposal-generations instead of a single one to extract candidate regions. The results show that the proposed method can obtain better performance than the traditional method by using a single object-proposal-generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相衬显微镜图像下细胞检测的丰富特征层次
R-CNN (region-convolutional neural network,区域卷积神经网络)最近在各种视觉检测领域都取得了非常突出的成果,它的object-proposal-generation功能可以在机器学习领域使用尽可能小的样本来实现有效的训练模型。本文提出了一种改进的R-CNN算法,并将其应用于相衬显微镜图像下的细胞检测,采用多代对象提议而不是单代对象提议来提取候选区域。结果表明,该方法比传统的单目标提议生成方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1