{"title":"Covid-19 crowd detection and alert system using image processing","authors":"Nitin Lodha, Harshvardhan Singh Gahlaut","doi":"10.1109/AICAPS57044.2023.10074221","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to help in identifying the people that are violating social distancing norms set by the government (necessary during the COVID-19 pandemic in public places), by providing an efficient real-time deep learning-based framework to automate the process of monitoring the social distancing via object detection and tracking approaches. Our system is divided into two subsystems: one that deals with crowd detection and control, and the other that sends information to the police authorities. Our system technologies, including as IoT, image processing, web cams, BLE, OpenCV, and Cloud, are being considered for inclusion in the proposed framework. The image processing is divided into two sections, the first of which is the extraction of frames from real-time movies, and the second of which is the processing of the frame to determine the number of individuals in the crowd. Even in a crowd, dissemination may be restricted if people adhere to social distancing standards. As a result, the image processing model primarily targets the number of people who do not adhere to social distancing norms and stand too close together.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we aim to help in identifying the people that are violating social distancing norms set by the government (necessary during the COVID-19 pandemic in public places), by providing an efficient real-time deep learning-based framework to automate the process of monitoring the social distancing via object detection and tracking approaches. Our system is divided into two subsystems: one that deals with crowd detection and control, and the other that sends information to the police authorities. Our system technologies, including as IoT, image processing, web cams, BLE, OpenCV, and Cloud, are being considered for inclusion in the proposed framework. The image processing is divided into two sections, the first of which is the extraction of frames from real-time movies, and the second of which is the processing of the frame to determine the number of individuals in the crowd. Even in a crowd, dissemination may be restricted if people adhere to social distancing standards. As a result, the image processing model primarily targets the number of people who do not adhere to social distancing norms and stand too close together.