Zhao-Ying Zhou, Jun Chen, Mingyuan Tao, P. Zhang, Meng Xu
{"title":"Experimental Validation of Event-Triggered Model Predictive Control for Autonomous Vehicle Path Tracking","authors":"Zhao-Ying Zhou, Jun Chen, Mingyuan Tao, P. Zhang, Meng Xu","doi":"10.1109/eIT57321.2023.10187304","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental validation of an event-triggered model predictive control (MPC) for autonomous vehicle (AV) path-tracking control using real-world testing. Path tracking is a critical aspect of AV control, and MPC is a popular control method for this task. However, traditional MPC requires extensive computational resources to solve real-time optimization problems, which can be challenging to implement in the real world. To address this issue, event-triggered MPC, which only solves the optimization problem when a triggering event occurs, has been proposed in the literature to reduce computational requirements. This paper then conducts experimental validation, where event-triggered MPC is compared to traditional time-triggered MPC through real-world testing, and the results demonstrate that the event-triggered MPC method not only offers a significant reduction in computation compared to timetriggered MPC but also improves the control performance.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an experimental validation of an event-triggered model predictive control (MPC) for autonomous vehicle (AV) path-tracking control using real-world testing. Path tracking is a critical aspect of AV control, and MPC is a popular control method for this task. However, traditional MPC requires extensive computational resources to solve real-time optimization problems, which can be challenging to implement in the real world. To address this issue, event-triggered MPC, which only solves the optimization problem when a triggering event occurs, has been proposed in the literature to reduce computational requirements. This paper then conducts experimental validation, where event-triggered MPC is compared to traditional time-triggered MPC through real-world testing, and the results demonstrate that the event-triggered MPC method not only offers a significant reduction in computation compared to timetriggered MPC but also improves the control performance.