A novel fuzzy logic model for multiple gas sensor array

R. Parthasarathy, V. Kalaichelvi, Swaminathan H. Sundaram
{"title":"A novel fuzzy logic model for multiple gas sensor array","authors":"R. Parthasarathy, V. Kalaichelvi, Swaminathan H. Sundaram","doi":"10.1109/ICCSP.2015.7322683","DOIUrl":null,"url":null,"abstract":"Gas sensors have the issue of non linearity, low selectivity and cross sensitivity to other gases which cause a huge aberration from the expected results. These can be alleviated if sensors are integrated and studied. While Artificial Neural Network models are not accurate in identification of complex mixtures of gases, this is improved by using a fuzzy logic model for an array of gas sensors which identifies the presence and the concentration of gases efficiently.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gas sensors have the issue of non linearity, low selectivity and cross sensitivity to other gases which cause a huge aberration from the expected results. These can be alleviated if sensors are integrated and studied. While Artificial Neural Network models are not accurate in identification of complex mixtures of gases, this is improved by using a fuzzy logic model for an array of gas sensors which identifies the presence and the concentration of gases efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多气体传感器阵列模糊逻辑模型
气体传感器存在非线性、低选择性和对其他气体的交叉灵敏度等问题,导致与预期结果有很大的偏差。如果对传感器进行集成和研究,这些问题可以得到缓解。虽然人工神经网络模型在识别复杂气体混合物方面不准确,但通过对气体传感器阵列使用模糊逻辑模型来有效识别气体的存在和浓度,可以改善这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved scheduling algorithm using dynamic tree construction for wireless sensor networks Design of polyphase FIR filter using bypass feed direct multiplier Implementation of floating point fused basic arithmetic module using Verilog Comparison of conventional flip flops with pulse triggered generation using signal feed through technique A novel 2GHz highly efficiency improved class-E Power Amplifier for Base stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1