A Divide and Conquer Algorithm for Dominance Testing in Acyclic CP-Nets

Sultan Ahmed, Malek Mouhoub
{"title":"A Divide and Conquer Algorithm for Dominance Testing in Acyclic CP-Nets","authors":"Sultan Ahmed, Malek Mouhoub","doi":"10.1109/ICTAI.2019.00062","DOIUrl":null,"url":null,"abstract":"The Conditional Preference Network (CP-net) represents user's conditional ceteris paribus (all else being equal) preference statements in a graphical manner. In general, an acyclic CP-net induces a strict partial order over the outcomes. The task of comparing two outcomes (dominance testing) is generally PSPACE-complete, which is a limitation for this intuitive model, especially when representing and solving preference-based constrained optimization problems. In order to overcome this limitation in practice, we propose a divide and conquer algorithm that compares two outcomes according to dominance testing. The algorithm divides the original CP-net into sub CP-nets, and recursively calls itself for each of the sub CP-nets until it reaches to a termination criterion. In the termination criterion, the answer of the dominance query is returned. With a theoretical analysis of the time performance, we demonstrate that the proposed algorithm outperforms the existing methods.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Conditional Preference Network (CP-net) represents user's conditional ceteris paribus (all else being equal) preference statements in a graphical manner. In general, an acyclic CP-net induces a strict partial order over the outcomes. The task of comparing two outcomes (dominance testing) is generally PSPACE-complete, which is a limitation for this intuitive model, especially when representing and solving preference-based constrained optimization problems. In order to overcome this limitation in practice, we propose a divide and conquer algorithm that compares two outcomes according to dominance testing. The algorithm divides the original CP-net into sub CP-nets, and recursively calls itself for each of the sub CP-nets until it reaches to a termination criterion. In the termination criterion, the answer of the dominance query is returned. With a theoretical analysis of the time performance, we demonstrate that the proposed algorithm outperforms the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种非循环cp -网络优势测试的分治算法
条件偏好网络(CP-net)以图形方式表示用户的条件其他条件(其他条件相同)偏好声明。一般来说,一个无环cp网在其结果上推导出严格的偏序。比较两个结果(优势测试)的任务通常是PSPACE-complete的,这是这种直观模型的限制,特别是在表示和解决基于偏好的约束优化问题时。为了在实践中克服这一限制,我们提出了一种分而治之的算法,根据优势度测试对两个结果进行比较。该算法将原始CP-net划分为子CP-net,并对每个子CP-net递归调用自己,直到达到终止准则。在终止条件中,返回支配性查询的答案。通过对时间性能的理论分析,我们证明了该算法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monaural Music Source Separation using a ResNet Latent Separator Network Graph-Based Attention Networks for Aspect Level Sentiment Analysis A Multi-channel Neural Network for Imbalanced Emotion Recognition Scaling up Prediction of Psychosis by Natural Language Processing Improving Bandit-Based Recommendations with Spatial Context Reasoning: An Online Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1