C. Khirallah, V. Stanković, L. Stankovi, D. Poutouris
{"title":"Network Spread Coding","authors":"C. Khirallah, V. Stanković, L. Stankovi, D. Poutouris","doi":"10.1109/NETCOD.2008.4476171","DOIUrl":null,"url":null,"abstract":"Data streaming over wireless ad hoc and peer-to- peer networks faces the problem of high level of inference, fading, and noise, which limits the feasibility of attractive realtime multimedia applications. One classical solution to reduce those effects is to employ the spread spectrum technique, which usually leads to unacceptable increase in the required bandwidth. On the other hand, network coding has recently been proposed as an efficient method for bandwidth reduction. In this paper, we describe a complete complementary coding based scheme, termed network spread coding (NSC) that brings together spread spectrum and network coding. NSC offers robustness to inference and noise, together with reduction in the required bandwidth. We develop two practical NSC designs that show competitive or better performance with respect to traditional spread spectrum schemes at lower complexity while achieving huge bandwidth savings both in AWGN and fading channels.","PeriodicalId":186056,"journal":{"name":"2008 Fourth Workshop on Network Coding, Theory and Applications","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth Workshop on Network Coding, Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NETCOD.2008.4476171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Data streaming over wireless ad hoc and peer-to- peer networks faces the problem of high level of inference, fading, and noise, which limits the feasibility of attractive realtime multimedia applications. One classical solution to reduce those effects is to employ the spread spectrum technique, which usually leads to unacceptable increase in the required bandwidth. On the other hand, network coding has recently been proposed as an efficient method for bandwidth reduction. In this paper, we describe a complete complementary coding based scheme, termed network spread coding (NSC) that brings together spread spectrum and network coding. NSC offers robustness to inference and noise, together with reduction in the required bandwidth. We develop two practical NSC designs that show competitive or better performance with respect to traditional spread spectrum schemes at lower complexity while achieving huge bandwidth savings both in AWGN and fading channels.