Image segmentation based on a dynamically coupled neural oscillator network

Ke Chen, Deliang Wang
{"title":"Image segmentation based on a dynamically coupled neural oscillator network","authors":"Ke Chen, Deliang Wang","doi":"10.1109/IJCNN.1999.833496","DOIUrl":null,"url":null,"abstract":"In this paper, a dynamically coupled neural oscillator network is proposed for image segmentation. Instead of pair-wise coupling, an ensemble of oscillators coupled in a local region is used for grouping. We introduce a set of neighborhoods to generate dynamical coupling structures associated with a specific oscillator. Based on the proximity and similarity principles, two grouping rules are proposed to explicitly consider the distinct cases of whether an oscillator is inside a homogeneous image region or near a boundary between different regions. The use of dynamical coupling makes our segmentation network robust to noise on an image. For fast computation, a segmentation algorithm is abstracted from the underlying oscillatory dynamics and has been applied to synthetic and real images. Simulation results demonstrate the effectiveness of our oscillator network in image segmentation.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a dynamically coupled neural oscillator network is proposed for image segmentation. Instead of pair-wise coupling, an ensemble of oscillators coupled in a local region is used for grouping. We introduce a set of neighborhoods to generate dynamical coupling structures associated with a specific oscillator. Based on the proximity and similarity principles, two grouping rules are proposed to explicitly consider the distinct cases of whether an oscillator is inside a homogeneous image region or near a boundary between different regions. The use of dynamical coupling makes our segmentation network robust to noise on an image. For fast computation, a segmentation algorithm is abstracted from the underlying oscillatory dynamics and has been applied to synthetic and real images. Simulation results demonstrate the effectiveness of our oscillator network in image segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态耦合神经振荡器网络的图像分割
本文提出了一种动态耦合神经振荡器网络用于图像分割。用局部区域内耦合的振子集合代替成对耦合进行分组。我们引入一组邻域来生成与特定振荡器相关的动态耦合结构。基于接近性和相似性原则,提出了两种分组规则,以明确地考虑振荡器是在均匀图像区域内还是在不同区域之间的边界附近的不同情况。动态耦合的使用使我们的分割网络对图像上的噪声具有鲁棒性。为了快速计算,从潜在的振荡动力学中抽象出一种分割算法,并应用于合成图像和真实图像。仿真结果证明了振荡器网络在图像分割中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1