Auto clustering for unsupervised learning of atomic gesture components using minimum description length

M. Walter, A. Psarrou, S. Gong
{"title":"Auto clustering for unsupervised learning of atomic gesture components using minimum description length","authors":"M. Walter, A. Psarrou, S. Gong","doi":"10.1109/RATFG.2001.938925","DOIUrl":null,"url":null,"abstract":"We present an approach to automatically segment and label a continuous observation sequence of hand gestures for a complete unsupervised model acquisition. The method is based on the assumption that gestures can be viewed as repetitive sequences of atomic components, similar to phonemes in speech, governed by a high level structure controlling the temporal sequence. We show that the generating process for the atomic components can be described in gesture space by a mixture of Gaussian, with each mixture component tied to one atomic behaviour. Mixture components are determined using a standard expectation maximisation approach while the determination of the number of components is based on an information criteria, the minimum description length.","PeriodicalId":355094,"journal":{"name":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RATFG.2001.938925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present an approach to automatically segment and label a continuous observation sequence of hand gestures for a complete unsupervised model acquisition. The method is based on the assumption that gestures can be viewed as repetitive sequences of atomic components, similar to phonemes in speech, governed by a high level structure controlling the temporal sequence. We show that the generating process for the atomic components can be described in gesture space by a mixture of Gaussian, with each mixture component tied to one atomic behaviour. Mixture components are determined using a standard expectation maximisation approach while the determination of the number of components is based on an information criteria, the minimum description length.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小描述长度的原子手势成分无监督学习自动聚类
我们提出了一种自动分割和标记手势连续观察序列的方法,用于完整的无监督模型获取。该方法基于一种假设,即手势可以被视为原子成分的重复序列,类似于语音中的音素,由一个控制时间序列的高级结构控制。我们证明了原子成分的生成过程可以在手势空间中通过高斯混合来描述,每个混合成分与一个原子行为相关联。混合成分使用标准期望最大化方法确定,而成分数量的确定基于信息标准,即最小描述长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting for fast face recognition Real-time stereo tracking of multiple moving heads Video-based online face recognition using identity surfaces Nonlinear mapping from multi-view face patterns to a Gaussian distribution in a low dimensional space Head and hands 3D tracking in real time by the EM algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1