Separable recursive training algorithms for feedforward neural networks

V. Asirvadam, S.F. McLoone, G. Irwin
{"title":"Separable recursive training algorithms for feedforward neural networks","authors":"V. Asirvadam, S.F. McLoone, G. Irwin","doi":"10.1109/IJCNN.2002.1007667","DOIUrl":null,"url":null,"abstract":"Novel separable recursive training strategies are derived for the training of feedforward neural networks. These hybrid algorithms combine nonlinear recursive optimization of hidden-layer nonlinear weights with recursive least-squares optimization of linear output-layer weights in one integrated routine. Experimental results for two benchmark problems demonstrate the superiority of the new hybrid training schemes compared to conventional counterparts.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Novel separable recursive training strategies are derived for the training of feedforward neural networks. These hybrid algorithms combine nonlinear recursive optimization of hidden-layer nonlinear weights with recursive least-squares optimization of linear output-layer weights in one integrated routine. Experimental results for two benchmark problems demonstrate the superiority of the new hybrid training schemes compared to conventional counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前馈神经网络的可分离递归训练算法
针对前馈神经网络的训练,提出了一种新的可分递归训练策略。这些混合算法将隐层非线性权值的非线性递推优化与线性输出层权值的递推最小二乘优化结合在一个集成程序中。两个基准问题的实验结果表明,该混合训练方案优于传统的混合训练方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1