Classification of EEG signals represented by AR models for cognitive tasks - a neural network based method

V. Maiorescu, M. Serban, A. Lazar
{"title":"Classification of EEG signals represented by AR models for cognitive tasks - a neural network based method","authors":"V. Maiorescu, M. Serban, A. Lazar","doi":"10.1109/SCS.2003.1227084","DOIUrl":null,"url":null,"abstract":"In this paper, the discrimination of mental tasks by means of the EEG signals is transformed into classification of a system that has as the output the EEG signals. A feedforward neural network is trained to classify six-channel EEG data into one of five classes which correspond to the selected tasks. A simpler topology of the neural network and a reduction of the dimension of layers are achieved due to an autoregressive (AR) model used to represent EEG signals. The network performances were analyzed based on classification rate for the cross-validation set.","PeriodicalId":375963,"journal":{"name":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCS.2003.1227084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, the discrimination of mental tasks by means of the EEG signals is transformed into classification of a system that has as the output the EEG signals. A feedforward neural network is trained to classify six-channel EEG data into one of five classes which correspond to the selected tasks. A simpler topology of the neural network and a reduction of the dimension of layers are achieved due to an autoregressive (AR) model used to represent EEG signals. The network performances were analyzed based on classification rate for the cross-validation set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知任务中AR模型表示的脑电信号分类——一种基于神经网络的方法
本文将利用脑电信号对心理任务的判别转化为以脑电信号为输出的系统分类。训练前馈神经网络,将六通道脑电数据分为五类,每一类对应于选定的任务。由于采用自回归(AR)模型来表示脑电图信号,神经网络的拓扑结构更简单,层数减少。基于交叉验证集的分类率对网络性能进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm based dynamic channel assignment for cellular radio networks Voltage controlled integrators/differentiators using current feedback amplifier A low noise-high counting rate readout system for X-ray imaging applications Implementation of 3D-DCT based video encoder/decoder system Periodic chaotic spreading sequences with better correlation properties than conventional sequences - BER performances analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1