Recent Advancement in Cancelable Biometric for User Recognition: A Brief Survey

Pratima Sharma, G. S. Walia, Rajesh Rohilla
{"title":"Recent Advancement in Cancelable Biometric for User Recognition: A Brief Survey","authors":"Pratima Sharma, G. S. Walia, Rajesh Rohilla","doi":"10.1109/SMART50582.2020.9337107","DOIUrl":null,"url":null,"abstract":"Surreptitious duplication of biometric features poses a major threat to privacy and anonymity of an individual. Cancelable Biometrics-an emerging field of biometric template protection scheme can diminish these privacy threats. Generally cancelable Biometric approach transforms the original biometric data using non-invertible transformation function to generate pseudo-identities or cancelable templates. In contrast, application of invertible transformation function in conjunction with key can also generate cancelable templates. Mostly, cancelable templates are revocable and computationally complex to reverse. The necessity of preserving privacy and maintaining high recognition accuracy compulsorily needs storage and matching of transformed biometric data. In order to determine the research gap and future direction in the field of cancelable biometrics, in this survey, we have analysed and reviewed the recent work in field of cancelable biometric. For this, cancelable biometric approaches are classified into invertible and noninvertible methods. Also, the comparative analysis of cancelable approach is tabulated. The research gaps and future directions are also summarised.","PeriodicalId":129946,"journal":{"name":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART50582.2020.9337107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Surreptitious duplication of biometric features poses a major threat to privacy and anonymity of an individual. Cancelable Biometrics-an emerging field of biometric template protection scheme can diminish these privacy threats. Generally cancelable Biometric approach transforms the original biometric data using non-invertible transformation function to generate pseudo-identities or cancelable templates. In contrast, application of invertible transformation function in conjunction with key can also generate cancelable templates. Mostly, cancelable templates are revocable and computationally complex to reverse. The necessity of preserving privacy and maintaining high recognition accuracy compulsorily needs storage and matching of transformed biometric data. In order to determine the research gap and future direction in the field of cancelable biometrics, in this survey, we have analysed and reviewed the recent work in field of cancelable biometric. For this, cancelable biometric approaches are classified into invertible and noninvertible methods. Also, the comparative analysis of cancelable approach is tabulated. The research gaps and future directions are also summarised.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于用户识别的可取消生物特征的最新进展:简要综述
生物特征的秘密复制对个人隐私和匿名性构成了重大威胁。可取消生物识别技术是一种新兴的生物识别模板保护方案,可以减少这些隐私威胁。一般可取消生物特征方法利用不可逆变换函数对原始生物特征数据进行变换,生成伪恒等式或可取消模板。相反,结合key应用可逆变换函数也可以生成可取消的模板。大多数情况下,可取消的模板是可撤销的,并且计算复杂。为了保护隐私和保持较高的识别精度,必须对转换后的生物特征数据进行存储和匹配。为了确定可取消生物识别领域的研究差距和未来发展方向,本文对近年来可取消生物识别领域的研究进展进行了分析和回顾。为此,将可取消生物识别方法分为可逆方法和不可逆方法。并对可取消方法进行了比较分析。并对研究的不足和未来发展方向进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oral Disease Detection using Neural Network A Review on Effectiveness of Artificial Intelligence Techniques in the Detection of COVID-19 Accident Avoidance Simulation using SUMO Gesture-Based Model of Mixed Reality Human-Computer Interface The Survey of Digital Image Analysis with Artificial Intelligence- DCNN Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1