Prediction of Stock Price Time Series using Transformers

L. D. Costa, A. Machado
{"title":"Prediction of Stock Price Time Series using Transformers","authors":"L. D. Costa, A. Machado","doi":"10.5753/bwaif.2023.230239","DOIUrl":null,"url":null,"abstract":"This work presents an implementation of the Transformer on the problem of predicting stock prices from time series. The model is compared with ARIMA and a neural network with LSTM cells. We hypothesize that, due to the powerful memory capacity and association between series values, the Transformer would be able to achieve better results than other shallow or deep solutions. The data used in the experiments is the average daily prices of 8 shares of the Ibovespa index in the period of 2008. The obtained results corroborated the hypothesis of superiority of the Transformer which predicted the stock prices with higher accuracy in 60% of the times.","PeriodicalId":101527,"journal":{"name":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bwaif.2023.230239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an implementation of the Transformer on the problem of predicting stock prices from time series. The model is compared with ARIMA and a neural network with LSTM cells. We hypothesize that, due to the powerful memory capacity and association between series values, the Transformer would be able to achieve better results than other shallow or deep solutions. The data used in the experiments is the average daily prices of 8 shares of the Ibovespa index in the period of 2008. The obtained results corroborated the hypothesis of superiority of the Transformer which predicted the stock prices with higher accuracy in 60% of the times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用变压器预测股票价格时间序列
本文提出了Transformer在时间序列预测股票价格问题上的一个实现。将该模型与ARIMA和LSTM细胞神经网络进行了比较。我们假设,由于强大的内存容量和串联值之间的关联,Transformer将能够获得比其他浅层或深层解决方案更好的结果。实验中使用的数据是Ibovespa指数8只股票在2008年期间的日均价格。所得结果证实了变压器预测股票价格的优越假设,其预测准确率在60%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Análise do impacto da sintonia de parâmetros de heurísticas de compra e venda de ações Multistage, Multiswarm Particle Swarm Optimization for Investment Portfolio Selection POE: A General Portfolio Optimization Environment for FinRL FinBERT-PT-BR: Análise de Sentimentos de Textos em Português do Mercado Financeiro Short-term prediction for Ethereum with Deep Neural Networks and Statistical Validation Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1