gMig: Efficient GPU Live Migration Optimized by Software Dirty Page for Full Virtualization

Jiacheng Ma, Xiao Zheng, Yaozu Dong, Wentai Li, Zhengwei Qi, Bingsheng He, Haibing Guan
{"title":"gMig: Efficient GPU Live Migration Optimized by Software Dirty Page for Full Virtualization","authors":"Jiacheng Ma, Xiao Zheng, Yaozu Dong, Wentai Li, Zhengwei Qi, Bingsheng He, Haibing Guan","doi":"10.1145/3186411.3186414","DOIUrl":null,"url":null,"abstract":"This paper introduces gMig, an open-source and practical GPU live migration solution for full virtualization. By taking advantage of the dirty pattern of GPU workloads, gMig presents the One-Shot Pre-Copy combined with the hashing based Software Dirty Page technique to achieve efficient GPU live migration. Particularly, we propose three approaches for gMig: 1) Dynamic Graphics Address Remapping, which parses and manipulates GPU commands to adjust the address mapping to adapt to a different environment after migration, 2) Software Dirty Page, which utilizes a hashing based approach to detect page modification, overcomes the commodity GPU's hardware limitation, and speeds up the migration by only sending the dirtied pages, 3) One-Shot Pre-Copy, which greatly reduces the rounds of pre-copy of graphics memory. Our evaluation shows that gMig achieves GPU live migration with an average downtime of 302 ms on Windows and 119 ms on Linux. With the help of Software Dirty Page, the number of GPU pages transferred during the downtime is effectively reduced by 80.0%.","PeriodicalId":176740,"journal":{"name":"Proceedings of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments","volume":"580 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3186411.3186414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper introduces gMig, an open-source and practical GPU live migration solution for full virtualization. By taking advantage of the dirty pattern of GPU workloads, gMig presents the One-Shot Pre-Copy combined with the hashing based Software Dirty Page technique to achieve efficient GPU live migration. Particularly, we propose three approaches for gMig: 1) Dynamic Graphics Address Remapping, which parses and manipulates GPU commands to adjust the address mapping to adapt to a different environment after migration, 2) Software Dirty Page, which utilizes a hashing based approach to detect page modification, overcomes the commodity GPU's hardware limitation, and speeds up the migration by only sending the dirtied pages, 3) One-Shot Pre-Copy, which greatly reduces the rounds of pre-copy of graphics memory. Our evaluation shows that gMig achieves GPU live migration with an average downtime of 302 ms on Windows and 119 ms on Linux. With the help of Software Dirty Page, the number of GPU pages transferred during the downtime is effectively reduced by 80.0%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gMig:高效的GPU实时迁移,由软件Dirty Page为完全虚拟化优化
本文介绍了gMig,一个开源和实用的GPU全虚拟化实时迁移解决方案。通过利用GPU工作负载的脏模式,gMig提出了一次性预拷贝与基于哈希的软件脏页技术相结合,实现高效的GPU实时迁移。具体来说,我们提出了三种gMig方法:1)动态图形地址重新映射(Dynamic Graphics Address Remapping),通过解析和操作GPU命令来调整地址映射,以适应迁移后的不同环境;2)软件脏页(Software Dirty Page),利用基于哈希的方法来检测页面修改,克服了商品GPU的硬件限制,只发送脏页,加快了迁移速度;3)一次性预拷贝(One-Shot Pre-Copy),大大减少了图形内存的预拷贝次数。我们的评估表明,gMig实现GPU实时迁移,在Windows上平均停机时间为302毫秒,在Linux上为119毫秒。借助软件脏页,在停机期间传输的GPU页面数量有效减少了80.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Dynamically-Generated Code Performance on Dynamic Binary Translators Demon: An Efficient Solution for on-Device MMU Virtualization in Mediated Pass-Through Hop, Skip, & Jump: Practical On-Stack Replacement for a Cross-Platform Language-Neutral VM gMig: Efficient GPU Live Migration Optimized by Software Dirty Page for Full Virtualization Fast PokeEMU: Scaling Generated Instruction Tests Using Aggregation and State Chaining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1