Selection Methods to Relax Strict Acceptance Condition in Test-Based Coevolution

A. G. Bari, Alessio Gaspar, R. P. Wiegand, Anthony Bucci
{"title":"Selection Methods to Relax Strict Acceptance Condition in Test-Based Coevolution","authors":"A. G. Bari, Alessio Gaspar, R. P. Wiegand, Anthony Bucci","doi":"10.1109/CEC.2018.8477934","DOIUrl":null,"url":null,"abstract":"The Population-based Pareto Hill Climber (P-PHC) algorithm exemplifies coevolutionary computation approaches that manage a group of candidate solutions both used as a population to explore the underlying search space as well as an archive preserving solutions that meet the adopted solution concept. In some circumstances when parsimonious evaluations are desired, inefficiencies can arise from using the same group of candidate solutions for both purposes. The reliance, in such algorithms, on the otherwise beneficial Pareto dominance concept can create bottlenecks on search progress as most newly generated solutions are non-dominated, and thus appear equally qualified to selection, when compared to the current ones they should eventually replace. We propose new selection conditions that include both Pareto dominated and Pareto non-dominated solutions, as well as other factors to help provide distinctions for selection. The potential benefits of also considering Pareto non-dominated solutions are illustrated by a visualization of the underlying interaction space in terms of levels. In addition, we define some new performance metrics that allow one to compare our various selection methods in terms of ideal evaluation of coevolution. Fewer duplicate solutions are retained in the final generation, thus allowing for more efficient usage of the fixed population size.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"28 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Population-based Pareto Hill Climber (P-PHC) algorithm exemplifies coevolutionary computation approaches that manage a group of candidate solutions both used as a population to explore the underlying search space as well as an archive preserving solutions that meet the adopted solution concept. In some circumstances when parsimonious evaluations are desired, inefficiencies can arise from using the same group of candidate solutions for both purposes. The reliance, in such algorithms, on the otherwise beneficial Pareto dominance concept can create bottlenecks on search progress as most newly generated solutions are non-dominated, and thus appear equally qualified to selection, when compared to the current ones they should eventually replace. We propose new selection conditions that include both Pareto dominated and Pareto non-dominated solutions, as well as other factors to help provide distinctions for selection. The potential benefits of also considering Pareto non-dominated solutions are illustrated by a visualization of the underlying interaction space in terms of levels. In addition, we define some new performance metrics that allow one to compare our various selection methods in terms of ideal evaluation of coevolution. Fewer duplicate solutions are retained in the final generation, thus allowing for more efficient usage of the fixed population size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于测试的协同进化中放宽严格验收条件的选择方法
基于种群的Pareto Hill Climber (P-PHC)算法举例说明了协同进化计算方法,该方法管理一组候选解决方案,这些解决方案既用作探索底层搜索空间的种群,又用于满足所采用的解决方案概念的存档保存解决方案。在某些情况下,当需要进行简洁的评估时,为两个目的使用同一组候选解决方案可能会导致效率低下。在这样的算法中,对帕累托支配概念的依赖可能会对搜索过程造成瓶颈,因为大多数新生成的解决方案都是非支配的,因此与它们最终应该取代的当前解决方案相比,它们似乎同样适合选择。我们提出了新的选择条件,包括帕累托支配和帕累托非支配的解决方案,以及其他因素,以帮助提供选择的区别。考虑帕累托非主导解决方案的潜在好处,可以通过层次的潜在交互空间的可视化来说明。此外,我们定义了一些新的性能指标,允许人们根据共同进化的理想评估来比较我们的各种选择方法。在最后一代中保留较少的重复解决方案,从而允许更有效地使用固定的种群大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Evolution of AutoEncoders for Compressed Representations Landscape-Based Differential Evolution for Constrained Optimization Problems A Novel Approach for Optimizing Ensemble Components in Rainfall Prediction A Many-Objective Evolutionary Algorithm with Fast Clustering and Reference Point Redistribution Manyobjective Optimization to Design Physical Topology of Optical Networks with Undefined Node Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1