Inference of gene networks associated with the host response to infectious disease

Zhe-Hong Gan, Xin Yuan, Ricardo Henao, E. Tsalik, L. Carin
{"title":"Inference of gene networks associated with the host response to infectious disease","authors":"Zhe-Hong Gan, Xin Yuan, Ricardo Henao, E. Tsalik, L. Carin","doi":"10.1017/CBO9781316162750.014","DOIUrl":null,"url":null,"abstract":"Inspired by the problem of inferring gene networks associated with the host response to infectious diseases, a new framework for discriminative factor models is developed. Bayesian shrinkage priors are employed to impose (near) sparsity on the factor loadings, while non-parametric techniques are utilized to infer the number of factors needed to represent the data. Two discriminative Bayesian loss functions are investigated, i.e. the logistic log-loss and the max-margin hinge loss. Efficient mean-field variational Bayesian inference and Gibbs sampling are implemented. To address large-scale datasets, an online version of variational Bayes is also developed. Experimental results on two realworld microarray-based gene expression datasets show that the proposed framework achieves comparatively superior classification performance, with model interpretation delivered via pathway association analysis.","PeriodicalId":415319,"journal":{"name":"Big Data over Networks","volume":"160 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data over Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781316162750.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Inspired by the problem of inferring gene networks associated with the host response to infectious diseases, a new framework for discriminative factor models is developed. Bayesian shrinkage priors are employed to impose (near) sparsity on the factor loadings, while non-parametric techniques are utilized to infer the number of factors needed to represent the data. Two discriminative Bayesian loss functions are investigated, i.e. the logistic log-loss and the max-margin hinge loss. Efficient mean-field variational Bayesian inference and Gibbs sampling are implemented. To address large-scale datasets, an online version of variational Bayes is also developed. Experimental results on two realworld microarray-based gene expression datasets show that the proposed framework achieves comparatively superior classification performance, with model interpretation delivered via pathway association analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与宿主对传染病反应相关的基因网络推断
受推断与宿主对传染病反应相关的基因网络问题的启发,开发了一个新的判别因子模型框架。贝叶斯收缩先验被用来对因子负载施加(接近)稀疏性,而非参数技术被用来推断表示数据所需的因子数量。研究了两种判别贝叶斯损失函数,即逻辑对数损失和最大裕度铰链损失。实现了有效的平均场变分贝叶斯推理和吉布斯抽样。为了处理大规模数据集,还开发了一个在线版本的变分贝叶斯。在两个基于微阵列的真实基因表达数据集上的实验结果表明,所提出的框架具有相对优越的分类性能,通过途径关联分析提供模型解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparsity-aware distributed learning Big data processing for smart grid security Tensor models: solution methods and applications Inference of gene networks associated with the host response to infectious disease A unified distributed algorithm for non-cooperative games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1