Xiaofeng Yuan, Zhenzhen Jia, Lingjian Ye, Kai Wang, Yalin Wang
{"title":"Industrial Soft Sensor Prediction based on Multi-model Integrated Method","authors":"Xiaofeng Yuan, Zhenzhen Jia, Lingjian Ye, Kai Wang, Yalin Wang","doi":"10.1109/DDCLS58216.2023.10166913","DOIUrl":null,"url":null,"abstract":"The industrial processes are commonly characterized by nonlinearities and dynamics. Therefore, long short-term memory (LSTM) networks are often adopted to extract the nonlinear dynamic features for the prediction of industrial quality indicators. However, traditional LSTM only captures the temporal characteristics of input variables but ignores the output variables. Therefore, a multi-model integrated method (MMIM) is proposed for simultaneously extracting the input and output temporal characteristics in this study. In the MMIM, a LSTM and other static models are used to collect the temporal and static characteristics for the inputs, while a RNN is applied to predict the output variable. The effectiveness and performance are verified on an industrial hydrocracking plant for the prediction of light naphtha isopentane and heavy naphtha quality.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The industrial processes are commonly characterized by nonlinearities and dynamics. Therefore, long short-term memory (LSTM) networks are often adopted to extract the nonlinear dynamic features for the prediction of industrial quality indicators. However, traditional LSTM only captures the temporal characteristics of input variables but ignores the output variables. Therefore, a multi-model integrated method (MMIM) is proposed for simultaneously extracting the input and output temporal characteristics in this study. In the MMIM, a LSTM and other static models are used to collect the temporal and static characteristics for the inputs, while a RNN is applied to predict the output variable. The effectiveness and performance are verified on an industrial hydrocracking plant for the prediction of light naphtha isopentane and heavy naphtha quality.