Encrypted rich-data steganography using generative adversarial networks

Dule Shu, Weilin Cong, Jiaming Chai, Conrad S. Tucker
{"title":"Encrypted rich-data steganography using generative adversarial networks","authors":"Dule Shu, Weilin Cong, Jiaming Chai, Conrad S. Tucker","doi":"10.1145/3395352.3402626","DOIUrl":null,"url":null,"abstract":"Steganography has received a great deal of attention within the information security domain due to its potential utility in ensuring network security and privacy. Leveraging advancements in deep neural networks, the state-of-the-art steganography models are capable of encoding a message within a cover image and producing a visually indistinguishable encoded image from which the decoder can recover the original message. While a message of different data types can be converted to a binary message before encoding into a cover image, this work explores the ability of neural network models to encode data types of different modalities. We propose the ERS-GAN (Encrypted Rich-data Steganography Generative Adversarial Network) - an end-to-end generative adversarial network model for efficient data encoding and decoding. Our proposed model is capable of encoding message of multiple types, e.g., text, audio and image, and is able to hide message deeply into a cover image without being detected and decoded by a third-party adversary who is not given permission to access the message. Experiments conducted on the datasets MS-COCO and Speech Commands show that our model out-performs or equally matches the state-of-the-arts in several aspects of steganography performance. Our proposed ERS-GAN can be potentially used to protect the wireless communication against malicious activity such as eavesdropping.","PeriodicalId":370816,"journal":{"name":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395352.3402626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Steganography has received a great deal of attention within the information security domain due to its potential utility in ensuring network security and privacy. Leveraging advancements in deep neural networks, the state-of-the-art steganography models are capable of encoding a message within a cover image and producing a visually indistinguishable encoded image from which the decoder can recover the original message. While a message of different data types can be converted to a binary message before encoding into a cover image, this work explores the ability of neural network models to encode data types of different modalities. We propose the ERS-GAN (Encrypted Rich-data Steganography Generative Adversarial Network) - an end-to-end generative adversarial network model for efficient data encoding and decoding. Our proposed model is capable of encoding message of multiple types, e.g., text, audio and image, and is able to hide message deeply into a cover image without being detected and decoded by a third-party adversary who is not given permission to access the message. Experiments conducted on the datasets MS-COCO and Speech Commands show that our model out-performs or equally matches the state-of-the-arts in several aspects of steganography performance. Our proposed ERS-GAN can be potentially used to protect the wireless communication against malicious activity such as eavesdropping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用生成对抗网络的加密富数据隐写
隐写术由于其在保障网络安全和隐私方面的潜在效用,在信息安全领域受到了极大的关注。利用深度神经网络的进步,最先进的隐写模型能够在封面图像中编码信息,并产生视觉上难以区分的编码图像,解码器可以从中恢复原始信息。虽然不同数据类型的消息可以在编码成封面图像之前转换为二进制消息,但这项工作探索了神经网络模型编码不同模态数据类型的能力。我们提出了ERS-GAN(加密富数据隐写生成对抗网络)-一个端到端的生成对抗网络模型,用于有效的数据编码和解码。我们提出的模型能够对多种类型的消息进行编码,例如文本、音频和图像,并且能够将消息深度隐藏到封面图像中,而不会被未被允许访问消息的第三方对手检测和解码。在MS-COCO和Speech Commands数据集上进行的实验表明,我们的模型在隐写性能的几个方面优于或等同于最先进的技术。我们提出的ERS-GAN可以潜在地用于保护无线通信免受恶意活动(如窃听)的侵害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wideband spectral monitoring using deep learning Generalized wireless adversarial deep learning Retracted on July 26, 2022: Open set recognition through unsupervised and class-distance learning Encrypted rich-data steganography using generative adversarial networks Generative adversarial attacks against intrusion detection systems using active learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1