Software V&V support by parametric analysis of large software simulation systems

J. Schumann, K. Gundy-Burlet, T. Menzies, A. Barrett
{"title":"Software V&V support by parametric analysis of large software simulation systems","authors":"J. Schumann, K. Gundy-Burlet, T. Menzies, A. Barrett","doi":"10.1109/AERO.2009.4839618","DOIUrl":null,"url":null,"abstract":"Modern aerospace software systems simulations usually contain many (dependent and independent) parameters. Due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components, analysis is complicated and time consuming. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such a comprehensive analysis with a tool to support parametric analysis and envelope assessment: a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations and model-based testcase generation is used to limit the number of cases without sacrificing important interactions in the parameter space. For the automatic analysis of the generated data we use unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. This unique combination of advanced machine learning technology enables a fast and powerful multivariate analysis that supports finding of root causes.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Modern aerospace software systems simulations usually contain many (dependent and independent) parameters. Due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components, analysis is complicated and time consuming. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such a comprehensive analysis with a tool to support parametric analysis and envelope assessment: a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations and model-based testcase generation is used to limit the number of cases without sacrificing important interactions in the parameter space. For the automatic analysis of the generated data we use unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. This unique combination of advanced machine learning technology enables a fast and powerful multivariate analysis that supports finding of root causes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型软件仿真系统参数化分析的软件V&V支持
现代航空航天软件系统的仿真通常包含许多(相关的和独立的)参数。由于大的参数空间,以及不同系统组件的复杂、高度耦合的非线性性质,分析是复杂和耗时的。因此,这样的系统通常只在预期操作点的局部区域进行验证,而不是通过对系统整个可行操作范围的表征进行验证。我们已经用支持参数分析和包络评估的工具解决了阻碍这种全面分析的因素:使用具有n因素组合参数变化的高级蒙特卡罗生成和基于模型的测试用例生成的组合来限制用例的数量,而不会牺牲参数空间中的重要交互。对于生成数据的自动分析,我们使用无监督贝叶斯聚类技术(AutoBayes)和使用处理学习器TAR3的关键参数范围的监督学习。这种独特的先进机器学习技术组合可以实现快速而强大的多变量分析,从而支持查找根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Wiener filters for small-target radiometric restoration Hop-by-hop transport for satellite networks Creating virtual sensors using learning based super resolution and data fusion Autonomous robot navigation using advanced motion primitives Development of a relay performance web tool for the Mars network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1