ARMA based popularity prediction for caching in Content Delivery Networks

N. Hassine, R. Milocco, P. Minet
{"title":"ARMA based popularity prediction for caching in Content Delivery Networks","authors":"N. Hassine, R. Milocco, P. Minet","doi":"10.1109/WD.2017.7918125","DOIUrl":null,"url":null,"abstract":"Content Delivery Networks (CDNs) are faced with an increasing and time varying demand of video contents. Their ability to promptly react to this demand is a success factor. Caching helps, but the question is: which contents to cache? Considering that the most popular contents should be cached, this paper focuses on how to predict the popularity of video contents. With real traces extracted from YouTube, we show that Auto-Regressive and Moving Average (ARMA) models can provide accurate predictions. We propose an original solution combining the predictions of several ARMA models. This solution achieves a better Hit Ratio and a smaller Update Ratio than the classical Least Frequently Used (LFU) caching technique.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Content Delivery Networks (CDNs) are faced with an increasing and time varying demand of video contents. Their ability to promptly react to this demand is a success factor. Caching helps, but the question is: which contents to cache? Considering that the most popular contents should be cached, this paper focuses on how to predict the popularity of video contents. With real traces extracted from YouTube, we show that Auto-Regressive and Moving Average (ARMA) models can provide accurate predictions. We propose an original solution combining the predictions of several ARMA models. This solution achieves a better Hit Ratio and a smaller Update Ratio than the classical Least Frequently Used (LFU) caching technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ARMA的内容交付网络缓存流行度预测
内容分发网络(cdn)面临着日益增长且随时间变化的视频内容需求。他们对这种需求迅速做出反应的能力是一个成功的因素。缓存有帮助,但问题是:缓存哪些内容?考虑到需要缓存最受欢迎的内容,本文重点研究如何预测视频内容的受欢迎程度。使用从YouTube中提取的真实轨迹,我们表明自回归和移动平均(ARMA)模型可以提供准确的预测。我们提出了一个结合多个ARMA模型预测的原始解决方案。与经典的最不频繁使用(LFU)缓存技术相比,该解决方案实现了更好的命中率和更小的更新率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of Receiver Directed Transmission protocol with a single transceiver in MANETs Joint channel sensing and power control scheme for cognitive radio wireless sensor networks Self-similarity of data traffic in a Delay Tolerant Network Give me a hint: An ID-free small data transmission protocol for dense IoT devices 5G massive MIMO with digital beamforming and two-stage channel estimation for low SHF band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1