Feedback Analysis for Digital Marketing in India: Empirical Study on Amazon.in, Flipkart, and Snapdeal

Biswajit Biswas, M. Sanyal, Tuhin Mukherjee
{"title":"Feedback Analysis for Digital Marketing in India: Empirical Study on Amazon.in, Flipkart, and Snapdeal","authors":"Biswajit Biswas, M. Sanyal, Tuhin Mukherjee","doi":"10.4018/ijom.2021010105","DOIUrl":null,"url":null,"abstract":"In the context of fastest growing Indian online market, the big players like Amazon.in, Flipkart.com, Snapdeal.com, etc. are in a competitive journey to expand their market share. This paper is an attempt in modelling customer feedback for the said e-market players. The paper uses feed forward neural networks with maximum two hidden layers and back propagation kind of supervised learning algorithm. The paper found satisfactory level of success and concludes usefulness of customer feedback for both customers (for purchase decision) and marketers (for product development) points of view. It is a footstep and opens a new research challenge for the post-COVID era of business.","PeriodicalId":308658,"journal":{"name":"Int. J. Online Mark.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Online Mark.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijom.2021010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the context of fastest growing Indian online market, the big players like Amazon.in, Flipkart.com, Snapdeal.com, etc. are in a competitive journey to expand their market share. This paper is an attempt in modelling customer feedback for the said e-market players. The paper uses feed forward neural networks with maximum two hidden layers and back propagation kind of supervised learning algorithm. The paper found satisfactory level of success and concludes usefulness of customer feedback for both customers (for purchase decision) and marketers (for product development) points of view. It is a footstep and opens a new research challenge for the post-COVID era of business.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度数字营销的反馈分析——基于亚马逊的实证研究Flipkart和Snapdeal
在增长最快的印度在线市场的背景下,像亚马逊这样的大玩家。在,Flipkart.com, Snapdeal.com等都在一个竞争的旅程,以扩大他们的市场份额。本文试图对上述电子市场参与者的客户反馈进行建模。本文采用最大两隐层前馈神经网络和反向传播类监督学习算法。论文发现了令人满意的成功水平,并总结了客户反馈对客户(购买决策)和营销人员(产品开发)观点的有用性。这是一个脚印,为后新冠时代的企业开启了新的研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding the Intention to Use Virtual Currency in a Gamified E-Commerce Context Flow Experience and Consumer Willingness to Pay in Online Mass Customization Processes The Effect of Self-Service Technologies on Customer Experiences in Banking: The Case of Ghana Does Personality Influence the Frequency of Online Purchase Behavior? Determinants of Online Purchase Intention of Apparel Products in Lebanon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1