Research on an Improved KCF Target Tracking Algorithm Based on CNN Feature Extraction

J. Gong, Yong Mei, Yong Zhou
{"title":"Research on an Improved KCF Target Tracking Algorithm Based on CNN Feature Extraction","authors":"J. Gong, Yong Mei, Yong Zhou","doi":"10.1109/ICAICA50127.2020.9182522","DOIUrl":null,"url":null,"abstract":"Target tracking is one of the most concerned computer problems, but it is also challenging with few training samples, fast moving objects and some other issues. The kernelized correlation filter (KCF) algorithm proposed by the team of Joao F. Henriques had applied to address this problem for tracking successfully. The method has expanded the number of negative samples to enhance the performance of the tracker and used the fast Fourier transform to accelerate the calculation of the algorithm. However, the features used by the KCF have limited ability to express the target with complex background. We propose improved KCF algorithm for tracking. The pre-trained deep convolutional neural network (CNN) is introduced in extracting the layer information respectively to describe the spatial and semantic features of the target. Experiments are performed on OTB-2015 benchmark datasets, and the results show that in comparison with the existing tracking algorithms, the proposed improved algorithm can deal with the challenges much better performance compared to original KCF and KCF-S method.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9182522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Target tracking is one of the most concerned computer problems, but it is also challenging with few training samples, fast moving objects and some other issues. The kernelized correlation filter (KCF) algorithm proposed by the team of Joao F. Henriques had applied to address this problem for tracking successfully. The method has expanded the number of negative samples to enhance the performance of the tracker and used the fast Fourier transform to accelerate the calculation of the algorithm. However, the features used by the KCF have limited ability to express the target with complex background. We propose improved KCF algorithm for tracking. The pre-trained deep convolutional neural network (CNN) is introduced in extracting the layer information respectively to describe the spatial and semantic features of the target. Experiments are performed on OTB-2015 benchmark datasets, and the results show that in comparison with the existing tracking algorithms, the proposed improved algorithm can deal with the challenges much better performance compared to original KCF and KCF-S method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN特征提取的改进KCF目标跟踪算法研究
目标跟踪是最受关注的计算机问题之一,但由于训练样本少、目标移动快等问题,目标跟踪也具有挑战性。Joao F. Henriques团队提出的核化相关滤波器(KCF)算法成功地解决了这一问题。该方法扩大了负样本的数量,提高了跟踪器的性能,并利用快速傅立叶变换加快了算法的计算速度。然而,KCF所使用的特征对复杂背景下目标的表达能力有限。我们提出了改进的KCF算法用于跟踪。引入预训练深度卷积神经网络(CNN)分别提取层信息来描述目标的空间特征和语义特征。在OTB-2015基准数据集上进行了实验,结果表明,与现有的跟踪算法相比,改进后的算法能够更好地应对挑战,性能优于原始的KCF和KCF- s方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined prediction model of tuberculosis based on generalized regression neural network Spinal fracture lesions segmentation based on U-net Review of Research on Multilevel Inverter Based on Asynchronous Motor Application of neural network in abnormal AIS data identification Integrated platform of on-board computer and star sensor electronics system based on COTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1