Equalization Optimization for SerDes Channels with Constrained Bayesian Optimization

M. A. Dolatsara
{"title":"Equalization Optimization for SerDes Channels with Constrained Bayesian Optimization","authors":"M. A. Dolatsara","doi":"10.1109/EMCSI39492.2022.10050240","DOIUrl":null,"url":null,"abstract":"Assigning parameters of a feed-forward equalizer (FFE) can be a challenging and time-consuming task. In this work we introduce a machine learning algorithm to automatically optimize these parameters without the need to a domain expert. Conventional optimizers are not applicable to this problem because of a constraint over the FFE parameters. Therefore, we reformulate the problem and propose a modified Bayesian optimization algorithm to take this constraint into account. The proposed approach is validated with an example.","PeriodicalId":250856,"journal":{"name":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI39492.2022.10050240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Assigning parameters of a feed-forward equalizer (FFE) can be a challenging and time-consuming task. In this work we introduce a machine learning algorithm to automatically optimize these parameters without the need to a domain expert. Conventional optimizers are not applicable to this problem because of a constraint over the FFE parameters. Therefore, we reformulate the problem and propose a modified Bayesian optimization algorithm to take this constraint into account. The proposed approach is validated with an example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束贝叶斯优化的SerDes通道均衡优化
分配前馈均衡器(FFE)的参数可能是一项具有挑战性且耗时的任务。在这项工作中,我们引入了一种机器学习算法来自动优化这些参数,而不需要领域专家。由于对FFE参数的约束,传统的优化器不适用于此问题。因此,我们对问题进行了重新表述,并提出了一种改进的贝叶斯优化算法来考虑这一约束。通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Chip Interposer with Micro-Bump Duality SOC Level Mitigations of RFI to WI-FI Bands from GDDR6 Clocks Automatic SPICE- Integrated Reinforcement Learning for Decap Optimization for EMI and Power Integrity HFSS Simulation Predicts the Radiated Emission from Complex Cable Harness Configuration A Segmentation Strategy for Structures with Common Mode Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1