Experiments in predicting the German stock index DAX with density estimating neural networks

Dirk Ormoneit, R. Neuneier
{"title":"Experiments in predicting the German stock index DAX with density estimating neural networks","authors":"Dirk Ormoneit, R. Neuneier","doi":"10.1109/CIFER.1996.501825","DOIUrl":null,"url":null,"abstract":"We compare the performance of multilayer perceptrons and density estimating neural networks in the task of forecasting the return and the volatility of the DAX index. We claim that for nontrivial target distributions, density estimating networks should lead to improved predictions. The reason is that the latter are capable of embodying more complex probability models for the target noise. We discuss appropriate distribution assumptions for the important cases of outliers and non constant variances, and give interpretations of the new estimates in regression theory.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We compare the performance of multilayer perceptrons and density estimating neural networks in the task of forecasting the return and the volatility of the DAX index. We claim that for nontrivial target distributions, density estimating networks should lead to improved predictions. The reason is that the latter are capable of embodying more complex probability models for the target noise. We discuss appropriate distribution assumptions for the important cases of outliers and non constant variances, and give interpretations of the new estimates in regression theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密度估计神经网络预测德国DAX指数的实验
我们比较了多层感知器和密度估计神经网络在预测DAX指数收益和波动率方面的性能。我们声称,对于非平凡的目标分布,密度估计网络应该导致改进的预测。原因是后者能够体现目标噪声更复杂的概率模型。讨论了异常值和非恒定方差的重要情况下的适当分布假设,并给出了回归理论中新的估计的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of an investment in South East Asian country funds investment company Self-organizing fuzzy and MLP approaches to detecting fraudulent financial reporting Density-based clustering and radial basis function modeling to generate credit card fraud scores The gene expression messy genetic algorithm for financial applications Problems with Monte Carlo simulation in the pricing of contingent claims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1