Fast and Efficient Constraint Evaluation of Analog Layout Using Machine Learning Models

Tonmoy Dhar, Jitesh Poojary, Yaguang Li, K. Kunal, Meghna Madhusudan, A. Sharma, Susmita Dey Manasi, Jiang Hu, R. Harjani, S. Sapatnekar
{"title":"Fast and Efficient Constraint Evaluation of Analog Layout Using Machine Learning Models","authors":"Tonmoy Dhar, Jitesh Poojary, Yaguang Li, K. Kunal, Meghna Madhusudan, A. Sharma, Susmita Dey Manasi, Jiang Hu, R. Harjani, S. Sapatnekar","doi":"10.1145/3394885.3431547","DOIUrl":null,"url":null,"abstract":"Placement algorithms for analog circuits explore numerous layout configurations in their iterative search. To steer these engines towards layouts that meet the electrical constraints on the design, this work develops a fast feasibility predictor to guide the layout engine. The flow first discerns rough bounds on layout parasitics and prunes the feature space. Next, a Latin hypercube sampling technique is used to sample the reduced search space, and the labeled samples are classified by a linear support vector machine (SVM). If necessary, a denser sample set is used for the SVM, or if the constraints are found to be nonlinear, a multilayer perceptron (MLP) is employed. The resulting machine learning model demonstrated to rapidly evaluate candidate placements in a placer, and is used to build layouts for several analog blocks.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Placement algorithms for analog circuits explore numerous layout configurations in their iterative search. To steer these engines towards layouts that meet the electrical constraints on the design, this work develops a fast feasibility predictor to guide the layout engine. The flow first discerns rough bounds on layout parasitics and prunes the feature space. Next, a Latin hypercube sampling technique is used to sample the reduced search space, and the labeled samples are classified by a linear support vector machine (SVM). If necessary, a denser sample set is used for the SVM, or if the constraints are found to be nonlinear, a multilayer perceptron (MLP) is employed. The resulting machine learning model demonstrated to rapidly evaluate candidate placements in a placer, and is used to build layouts for several analog blocks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习模型的模拟布局快速有效约束评估
模拟电路的布局算法在其迭代搜索中探索许多布局配置。为了使这些引擎朝着满足设计电气约束的布局方向发展,本工作开发了一个快速可行性预测器来指导布局引擎。该流程首先识别布局寄生的粗略边界,并对特征空间进行修剪。其次,采用拉丁超立方体采样技术对约简后的搜索空间进行采样,并利用线性支持向量机对标记后的样本进行分类。如果有必要,支持向量机使用更密集的样本集,或者如果发现约束是非线性的,则使用多层感知器(MLP)。由此产生的机器学习模型被证明可以快速评估砂矿中的候选位置,并用于构建多个模拟块的布局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Aware NAS Framework with Layer Adaptive Scheduling on Embedded System Value-Aware Error Detection and Correction for SRAM Buffers in Low-Bitwidth, Floating-Point CNN Accelerators A Unified Printed Circuit Board Routing Algorithm With Complicated Constraints and Differential Pairs Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with Application to Neural Architecture Search A DSM-based Polar Transmitter with 23.8% System Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1