{"title":"Disturbance observer-based multirate control for rejecting periodic disturbances beyond the Nyquist frequency","authors":"Weili Yan, C. Pang, C. Du","doi":"10.1109/AMC.2016.7496403","DOIUrl":null,"url":null,"abstract":"Periodic disturbances existing beyond the Nyquist frequency will cause intersample oscillations and degrade the control performance. In this paper, we propose a disturbance observer-based multirate control scheme for rejecting such periodic disturbances. When the disturbance is a single sinusoid, the solution for system output including the intersample information is derived in the steady state. Based on the steady-state output response, a sufficient condition is given for rejecting periodic disturbance beyond the Nyquist frequency. As a matter of fact, solving the sufficient condition is a problem of quadratic programming with some constraints. To remove the constraints, a periodic time-varying filter is also suggested to enhance the disturbance rejection performance. A numerical example is presented to demonstrate the effectiveness of the proposed method.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"158 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Periodic disturbances existing beyond the Nyquist frequency will cause intersample oscillations and degrade the control performance. In this paper, we propose a disturbance observer-based multirate control scheme for rejecting such periodic disturbances. When the disturbance is a single sinusoid, the solution for system output including the intersample information is derived in the steady state. Based on the steady-state output response, a sufficient condition is given for rejecting periodic disturbance beyond the Nyquist frequency. As a matter of fact, solving the sufficient condition is a problem of quadratic programming with some constraints. To remove the constraints, a periodic time-varying filter is also suggested to enhance the disturbance rejection performance. A numerical example is presented to demonstrate the effectiveness of the proposed method.