Recommendation for Web services with domain specific context awareness

B. Kumara, Incheon Paik, K. Koswatte, Wuhui Chen
{"title":"Recommendation for Web services with domain specific context awareness","authors":"B. Kumara, Incheon Paik, K. Koswatte, Wuhui Chen","doi":"10.1109/CIDM.2014.7008679","DOIUrl":null,"url":null,"abstract":"Construction of Web service recommendation systems for users has become an important issue in service computing area. Content-based service recommendation is one category of recommendation systems. The system recommends services based on functionality of the services. Current content-based approaches use syntactic or semantic methods to calculate the similarity. However, syntactic methods are insufficient in expressing semantic concepts and semantic content-based methods only consider basic semantic level. Further, the approaches do not consider the domain specific context in measuring the similarity. Thus, they have been failed to capture the semantic similarity of Web services under a certain domain and this is affected to the performance of the recommendation. In this paper, we propose domain specific context aware recommendation approach that uses support vector machine and domain data set from search engine in similarity calculation process. Experimental results show that our approach works efficiently.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Construction of Web service recommendation systems for users has become an important issue in service computing area. Content-based service recommendation is one category of recommendation systems. The system recommends services based on functionality of the services. Current content-based approaches use syntactic or semantic methods to calculate the similarity. However, syntactic methods are insufficient in expressing semantic concepts and semantic content-based methods only consider basic semantic level. Further, the approaches do not consider the domain specific context in measuring the similarity. Thus, they have been failed to capture the semantic similarity of Web services under a certain domain and this is affected to the performance of the recommendation. In this paper, we propose domain specific context aware recommendation approach that uses support vector machine and domain data set from search engine in similarity calculation process. Experimental results show that our approach works efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有特定于域的上下文感知的Web服务的推荐
构建面向用户的Web服务推荐系统已成为服务计算领域的一个重要课题。基于内容的服务推荐是推荐系统的一种。系统根据服务的功能推荐服务。当前基于内容的方法使用句法或语义方法来计算相似度。然而,句法方法在表达语义概念方面存在不足,基于语义内容的方法只考虑基本的语义层面。此外,这些方法在测量相似度时没有考虑领域特定的上下文。因此,它们无法捕获特定域下Web服务的语义相似度,从而影响了推荐的性能。本文提出了一种基于特定领域的上下文感知推荐方法,该方法在相似度计算过程中使用支持向量机和搜索引擎的领域数据集。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1