Smart home Management System with Face Recognition Based on ArcFace Model in Deep Convolutional Neural Network

T. Dang
{"title":"Smart home Management System with Face Recognition Based on ArcFace Model in Deep Convolutional Neural Network","authors":"T. Dang","doi":"10.18196/jrc.v3i6.15978","DOIUrl":null,"url":null,"abstract":"In recent years, artificial intelligence has proved its potential in many fields, especially in computer vision. Facial recognition is one of the most essential tasks in the field of computer vision with various prospective applications from academic research to intelligence service. In this paper, we propose an efficient deep learning approach to facial recognition. Our approach utilizes the architecture of ArcFace model based on the backbone MobileNet V2, in deep convolutional neural network (DCNN). Assistive techniques to increase highly distinguishing features in facial recognition. With the supports of the facial authentication combines with hand gestures recognition, users will be able to monitor and control his home through his mobile phone/tablet/PC. Moreover, they communicate with data and connect to smart devices easily through IoT technology. The overall proposed model is 97% of accuracy and a processing speed of 25 FPS. The interface of the smart home demonstrates the successful functions of real-time operations.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v3i6.15978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In recent years, artificial intelligence has proved its potential in many fields, especially in computer vision. Facial recognition is one of the most essential tasks in the field of computer vision with various prospective applications from academic research to intelligence service. In this paper, we propose an efficient deep learning approach to facial recognition. Our approach utilizes the architecture of ArcFace model based on the backbone MobileNet V2, in deep convolutional neural network (DCNN). Assistive techniques to increase highly distinguishing features in facial recognition. With the supports of the facial authentication combines with hand gestures recognition, users will be able to monitor and control his home through his mobile phone/tablet/PC. Moreover, they communicate with data and connect to smart devices easily through IoT technology. The overall proposed model is 97% of accuracy and a processing speed of 25 FPS. The interface of the smart home demonstrates the successful functions of real-time operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ArcFace模型的深度卷积神经网络人脸识别智能家居管理系统
近年来,人工智能已经在许多领域证明了它的潜力,特别是在计算机视觉方面。人脸识别是计算机视觉领域最重要的任务之一,从学术研究到情报服务都有广泛的应用前景。在本文中,我们提出了一种高效的深度学习人脸识别方法。我们的方法在深度卷积神经网络(DCNN)中利用基于骨干MobileNet V2的ArcFace模型架构。在面部识别中增加高度显著特征的辅助技术。在面部认证与手势识别相结合的支持下,用户可以通过手机/平板电脑/PC对自己的家进行监控。此外,它们还可以通过物联网技术轻松地与数据通信并连接到智能设备。该模型的总体精度为97%,处理速度为每秒25帧。智能家居界面展示了实时操作的成功功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
期刊最新文献
Efficient Path Planning Algorithm for Mobile Robots Performing Floor Cleaning Like Operations Adaptive Cruise Control of the Autonomous Vehicle Based on Sliding Mode Controller Using Arduino and Ultrasonic Sensor Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology Using Learning Focal Point Algorithm to Classify Emotional Intelligence Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1