Using Learning Focal Point Algorithm to Classify Emotional Intelligence

Abdelhak Sakhi, Salah-Eddine Mansour, A. Sekkaki
{"title":"Using Learning Focal Point Algorithm to Classify Emotional Intelligence","authors":"Abdelhak Sakhi, Salah-Eddine Mansour, A. Sekkaki","doi":"10.18196/jrc.v5i1.20895","DOIUrl":null,"url":null,"abstract":"Recognizing the fundamental role of learners' emotions in the educational process, this study aims to enhance educational experiences by incorporating emotional intelligence (EI) into teacher robots through artificial intelligence and image processing technologies. The primary hurdle addressed is the inadequacy of conventional methods, particularly convolutional neural networks (CNNs) with pooling layers, in imbuing robots with emotional intelligence. To surmount this challenge, the research proposes an innovative solution—introducing a novel learning focal point (LFP) layer to replace pooling layers, resulting in significant enhancements in accuracy and other vital parameters. The distinctive contribution of this research lies in the creation and application of the LFP algorithm, providing a novel approach to emotion classification for teacher robots. The results showcase the LFP algorithm's superior performance compared to traditional CNN approaches. In conclusion, the study highlights the transformative impact of the LFP algorithm on the accuracy of classification models and, consequently, on emotionally intelligent teacher robots. This research contributes valuable insights to the convergence of artificial intelligence and education, with implications for future advancements in the field.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"269 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v5i1.20895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recognizing the fundamental role of learners' emotions in the educational process, this study aims to enhance educational experiences by incorporating emotional intelligence (EI) into teacher robots through artificial intelligence and image processing technologies. The primary hurdle addressed is the inadequacy of conventional methods, particularly convolutional neural networks (CNNs) with pooling layers, in imbuing robots with emotional intelligence. To surmount this challenge, the research proposes an innovative solution—introducing a novel learning focal point (LFP) layer to replace pooling layers, resulting in significant enhancements in accuracy and other vital parameters. The distinctive contribution of this research lies in the creation and application of the LFP algorithm, providing a novel approach to emotion classification for teacher robots. The results showcase the LFP algorithm's superior performance compared to traditional CNN approaches. In conclusion, the study highlights the transformative impact of the LFP algorithm on the accuracy of classification models and, consequently, on emotionally intelligent teacher robots. This research contributes valuable insights to the convergence of artificial intelligence and education, with implications for future advancements in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用学习焦点算法对情商进行分类
认识到学习者的情感在教育过程中的基本作用,本研究旨在通过人工智能和图像处理技术将情感智能(EI)融入教师机器人,从而增强教育体验。所要解决的主要障碍是传统方法,特别是具有汇集层的卷积神经网络(CNN),在为机器人注入情感智能方面存在不足。为了克服这一挑战,研究提出了一个创新的解决方案--引入一个新颖的学习焦点(LFP)层来取代汇集层,从而显著提高准确性和其他重要参数。这项研究的独特贡献在于创建和应用了 LFP 算法,为教师机器人的情感分类提供了一种新方法。研究结果表明,与传统的 CNN 方法相比,LFP 算法性能优越。总之,本研究强调了 LFP 算法对分类模型准确性的变革性影响,以及对情感智能教师机器人的变革性影响。这项研究为人工智能与教育的融合提供了宝贵的见解,并对该领域未来的发展产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
期刊最新文献
Efficient Path Planning Algorithm for Mobile Robots Performing Floor Cleaning Like Operations Adaptive Cruise Control of the Autonomous Vehicle Based on Sliding Mode Controller Using Arduino and Ultrasonic Sensor Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology Using Learning Focal Point Algorithm to Classify Emotional Intelligence Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1