A probe-type fiber optic ultraviolet photodetector

Yue Qin, Dingbang Ma, Y. Wang, C. Liao, Yiping Wang
{"title":"A probe-type fiber optic ultraviolet photodetector","authors":"Yue Qin, Dingbang Ma, Y. Wang, C. Liao, Yiping Wang","doi":"10.1117/12.2681883","DOIUrl":null,"url":null,"abstract":"A probe-type all-fiber ultraviolet photodetector is proposed in this paper. A ZnO microwire is fixed on the end facet of a single-mode fiber through a glass tube with specific diameter to form a Fabry-Pérot interferometer. With this all-fiber structure, fast-response ultraviolet detection can be realized in an all-optical scheme. Since the refractive index of ZnO microwire increases under the illumination of ultraviolet, interference wavelengths of abovementioned device redshifts with the increase of ultraviolet light intensity. By employing a continuous 266-nm laser beam and chopping method, the sensitivity is obtained to be 0.268 nm/(W·cm-2 ) and the response time is only 0.56 ms. To be more specifically, the response speed of the device is further explored by a 266-nm pulsed laser, and the response time of the device is measured to be only 13 μs. The proposed device provides a new idea for the next generation of high-performance ultraviolet photodetectors and may find potential applications in the future.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"286 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Optical Fibre Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2681883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A probe-type all-fiber ultraviolet photodetector is proposed in this paper. A ZnO microwire is fixed on the end facet of a single-mode fiber through a glass tube with specific diameter to form a Fabry-Pérot interferometer. With this all-fiber structure, fast-response ultraviolet detection can be realized in an all-optical scheme. Since the refractive index of ZnO microwire increases under the illumination of ultraviolet, interference wavelengths of abovementioned device redshifts with the increase of ultraviolet light intensity. By employing a continuous 266-nm laser beam and chopping method, the sensitivity is obtained to be 0.268 nm/(W·cm-2 ) and the response time is only 0.56 ms. To be more specifically, the response speed of the device is further explored by a 266-nm pulsed laser, and the response time of the device is measured to be only 13 μs. The proposed device provides a new idea for the next generation of high-performance ultraviolet photodetectors and may find potential applications in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种探针型光纤紫外光电探测器
提出了一种探针型全光纤紫外探测器。将氧化锌微丝通过特定直径的玻璃管固定在单模光纤的端面上,形成法布里-普氏干涉仪。利用这种全光纤结构,可以在全光方案下实现快速响应紫外检测。由于紫外光照射下ZnO微线的折射率增大,上述器件的干涉波长随着紫外光强度的增加而红移。采用266 nm连续激光束和斩波方法,获得了0.268 nm/(W·cm-2)的灵敏度,响应时间仅为0.56 ms。具体来说,利用266 nm脉冲激光进一步探索了器件的响应速度,测量到器件的响应时间仅为13 μs。所提出的器件为下一代高性能紫外探测器提供了新的思路,并可能在未来找到潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trackbed behavior analysis based on distributed acoustic sensor Monitoring mining induced seismicity using optical fibre sensors during mine exploitation Gait monitoring system based on plastic optical fiber integrated with smartphone Cryogenic liquid level sensor based on long period grating A gold/MXene/MOF composite based optical fiber biosensor for haemoglobin detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1