Biplob K. Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, C. Ungureanu
{"title":"Revisiting hash table design for phase change memory","authors":"Biplob K. Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, C. Ungureanu","doi":"10.1145/2819001.2819002","DOIUrl":null,"url":null,"abstract":"Phase Change Memory (PCM) is emerging as an attractive alternative to Dynamic Random Access Memory (DRAM) in building data-intensive computing systems. PCM offers read/write performance asymmetry that makes it necessary to revisit the design of in-memory applications.\n In this paper, we focus on in-memory hash tables, a family of data structures with wide applicability. We evaluate several popular hash-table designs to understand their performance under PCM. We find that for write-heavy workloads the designs that achieve best performance for PCMdiffer from the ones that are best for DRAM, and that designs achieving a high load factor also cause a high number of memory writes. Finally, we propose PFHT, a PCM-Friendly Hash Table which presents a cuckoo hashing variant that is tailored to PCM characteristics, and offers a better trade-off between performance, the amount of writes generated, and the expected load factor than any of the existing DRAM-based implementations.","PeriodicalId":293142,"journal":{"name":"INFLOW '15","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFLOW '15","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2819001.2819002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Phase Change Memory (PCM) is emerging as an attractive alternative to Dynamic Random Access Memory (DRAM) in building data-intensive computing systems. PCM offers read/write performance asymmetry that makes it necessary to revisit the design of in-memory applications.
In this paper, we focus on in-memory hash tables, a family of data structures with wide applicability. We evaluate several popular hash-table designs to understand their performance under PCM. We find that for write-heavy workloads the designs that achieve best performance for PCMdiffer from the ones that are best for DRAM, and that designs achieving a high load factor also cause a high number of memory writes. Finally, we propose PFHT, a PCM-Friendly Hash Table which presents a cuckoo hashing variant that is tailored to PCM characteristics, and offers a better trade-off between performance, the amount of writes generated, and the expected load factor than any of the existing DRAM-based implementations.