M. Möller, Nicolas Berton, Meike Klettke, Stefanie Scherzinger, U. Störl
{"title":"jHound: Large-Scale Profiling of Open JSON Data","authors":"M. Möller, Nicolas Berton, Meike Klettke, Stefanie Scherzinger, U. Störl","doi":"10.18420/btw2019-44","DOIUrl":null,"url":null,"abstract":"We present jHound, a tool for profiling large collections of JSON data, and apply it to thousands of data sets holding open government data. jHound reports key characteristics of JSON documents, such as their nesting depth. As we show, jHound can help detect structural outliers, and most importantly, badly encoded documents: jHound can pinpoint certain cases of documents that use string-typed values where other native JSON datatypes would have been a better match. Moreover, we can detect certain cases of maladaptively structured JSON documents, which obviously do not comply with good data modeling practices. By interactively exploring particular example documents, we hope to inspire discussions in the community about what makes a good JSON encoding.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbanksysteme für Business, Technologie und Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/btw2019-44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We present jHound, a tool for profiling large collections of JSON data, and apply it to thousands of data sets holding open government data. jHound reports key characteristics of JSON documents, such as their nesting depth. As we show, jHound can help detect structural outliers, and most importantly, badly encoded documents: jHound can pinpoint certain cases of documents that use string-typed values where other native JSON datatypes would have been a better match. Moreover, we can detect certain cases of maladaptively structured JSON documents, which obviously do not comply with good data modeling practices. By interactively exploring particular example documents, we hope to inspire discussions in the community about what makes a good JSON encoding.