Coenrollment networks and their relationship to grades in undergraduate education

Josh Gardner, Christopher A. Brooks
{"title":"Coenrollment networks and their relationship to grades in undergraduate education","authors":"Josh Gardner, Christopher A. Brooks","doi":"10.1145/3170358.3170373","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate the complete undergraduate coenrollment network over a decade of education at a large American public university. We provide descriptive properties of the network, demonstrating that the coenrollment networks evaluated follow power-law degree distributions similar to many other large-scale networks; that they reveal strong performance-based assortativity; and that network-based features can significantly improve GPA-based student performance predictors. We then implement a network-based, multi-view classification model to predict students' final course grades. In particular, we adapt a structural modeling approach from [19, 34], whereby we model the university-wide undergraduate coenrollment network as an undirected graph. We compare the performance of our predictor to traditional methods used for grade prediction in undergraduate university courses, and demonstrate that a multi-view ensembling approach outperforms both prior \"flat\" and network-based models for grade prediction across several classification metrics. These findings demonstrate the usefulness of combining diverse approaches in models of student success, and demonstrate specific network-based modeling strategies which are likely to be most effective for grade prediction.","PeriodicalId":437369,"journal":{"name":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170358.3170373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we evaluate the complete undergraduate coenrollment network over a decade of education at a large American public university. We provide descriptive properties of the network, demonstrating that the coenrollment networks evaluated follow power-law degree distributions similar to many other large-scale networks; that they reveal strong performance-based assortativity; and that network-based features can significantly improve GPA-based student performance predictors. We then implement a network-based, multi-view classification model to predict students' final course grades. In particular, we adapt a structural modeling approach from [19, 34], whereby we model the university-wide undergraduate coenrollment network as an undirected graph. We compare the performance of our predictor to traditional methods used for grade prediction in undergraduate university courses, and demonstrate that a multi-view ensembling approach outperforms both prior "flat" and network-based models for grade prediction across several classification metrics. These findings demonstrate the usefulness of combining diverse approaches in models of student success, and demonstrate specific network-based modeling strategies which are likely to be most effective for grade prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本科共同招生网络及其与成绩的关系
在本文中,我们评估了美国一所大型公立大学十年来完整的本科合招生网络。我们提供了网络的描述性属性,证明评估的共招生网络遵循幂律度分布,类似于许多其他大规模网络;它们揭示了强大的基于绩效的协调性;基于网络的特征可以显著改善基于gpa的学生表现预测。然后,我们实现了一个基于网络的多视图分类模型来预测学生的最终课程成绩。特别地,我们采用了[19,34]中的结构建模方法,将大学范围内的本科生共同招生网络建模为无向图。我们将我们的预测器的性能与用于本科大学课程成绩预测的传统方法进行了比较,并证明了多视图集成方法在多个分类指标上优于先前的“平面”和基于网络的成绩预测模型。这些发现证明了在学生成功模型中结合不同方法的有效性,并证明了基于网络的特定建模策略可能是最有效的成绩预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The half-life of MOOC knowledge: a randomized trial evaluating knowledge retention and retrieval practice in MOOCs The influence of students' cognitive and motivational characteristics on students' use of a 4C/ID-based online learning environment and their learning gain Connecting decentralized learning records: a blockchain based learning analytics platform Towards a writing analytics framework for adult english language learners Gaze insights into debugging behavior using learner-centred analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1