ViSE: Visual Search Engine Using Multiple Networked Cameras

U. Park, Anil K. Jain, I. Kitahara, K. Kogure, N. Hagita
{"title":"ViSE: Visual Search Engine Using Multiple Networked Cameras","authors":"U. Park, Anil K. Jain, I. Kitahara, K. Kogure, N. Hagita","doi":"10.1109/ICPR.2006.1176","DOIUrl":null,"url":null,"abstract":"We propose a visual search engine (ViSE) as a semi-automatic component in a surveillance system using networked cameras. The ViSE aims to assist the monitoring operation of huge amounts of captured video streams, which tracks and finds people in the video based on their primitive features with the interaction of a human operator. We address the issues of object detection and tracking, shadow suppression and color-based recognition for the proposed system. The experimental results on a set of video data with ten subjects showed that ViSE retrieves correct candidates with 83% recall at 83% precision","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.1176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

Abstract

We propose a visual search engine (ViSE) as a semi-automatic component in a surveillance system using networked cameras. The ViSE aims to assist the monitoring operation of huge amounts of captured video streams, which tracks and finds people in the video based on their primitive features with the interaction of a human operator. We address the issues of object detection and tracking, shadow suppression and color-based recognition for the proposed system. The experimental results on a set of video data with ten subjects showed that ViSE retrieves correct candidates with 83% recall at 83% precision
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ViSE:使用多个网络摄像机的视觉搜索引擎
我们提出了一种视觉搜索引擎(ViSE)作为使用网络摄像机的监控系统的半自动组件。ViSE旨在协助监控大量捕获的视频流,通过人工操作员的交互,根据他们的原始特征跟踪并找到视频中的人物。我们解决了该系统的目标检测和跟踪、阴影抑制和基于颜色的识别问题。在10个被试的视频数据上的实验结果表明,该方法能够以83%的查全率和83%的准确率检索出正确的候选对象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1