Model-based Edge Tracking for Segmentation of Low Contrast Images

C. Hudy, J. Campbell, J. Slater
{"title":"Model-based Edge Tracking for Segmentation of Low Contrast Images","authors":"C. Hudy, J. Campbell, J. Slater","doi":"10.1109/IMVIP.2007.28","DOIUrl":null,"url":null,"abstract":"Segmentation is a significant preliminary step for many image-based object recognition activities. Microscopy images often present segmentation problems, namely low contrast (the objects are translucent) and occlusions. Fortunately, translucency provides some possibility of solving the occlusion problem; edge-based methods can be used to tackle the low contrast (translucency) problem, but the edges are noisy and edge tracking must be used. In occluded regions edges can be very faint and noise and conflicting edges can confuse even edge tracking: an edge contour containing gaps may result. This poster presents work on a gap filling algorithm that uses model-based prediction to augment noisy edge data.","PeriodicalId":249544,"journal":{"name":"International Machine Vision and Image Processing Conference (IMVIP 2007)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Machine Vision and Image Processing Conference (IMVIP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Segmentation is a significant preliminary step for many image-based object recognition activities. Microscopy images often present segmentation problems, namely low contrast (the objects are translucent) and occlusions. Fortunately, translucency provides some possibility of solving the occlusion problem; edge-based methods can be used to tackle the low contrast (translucency) problem, but the edges are noisy and edge tracking must be used. In occluded regions edges can be very faint and noise and conflicting edges can confuse even edge tracking: an edge contour containing gaps may result. This poster presents work on a gap filling algorithm that uses model-based prediction to augment noisy edge data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型边缘跟踪的低对比度图像分割
分割是许多基于图像的目标识别活动的重要步骤。显微镜图像经常出现分割问题,即低对比度(物体是半透明的)和闭塞。幸运的是,半透明提供了一些解决遮挡问题的可能性;基于边缘的方法可以用来解决低对比度(半透明)问题,但边缘有噪声,必须使用边缘跟踪。在被遮挡的区域,边缘可能非常模糊,噪声和冲突的边缘甚至会混淆边缘跟踪:可能会产生包含间隙的边缘轮廓。这张海报展示了一种使用基于模型的预测来增强噪声边缘数据的间隙填充算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Logic Based Segmentation of Microcalcification in Breast Using Digital Mammograms Considering Multiresolution Near-Circular Corner and Edge Detection Operators Recognition of Unstained Live Drosophila Cells in Microscope Images Video Object Motion Segmentation for Intelligent Visual Surveillance Speckle reduction using the discrete Fourier filtering technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1