Blind channel estimation for OFDM systems using all entries of covariance matrix

A. Pirsiavash, S. Salari, S. Ghadrdan
{"title":"Blind channel estimation for OFDM systems using all entries of covariance matrix","authors":"A. Pirsiavash, S. Salari, S. Ghadrdan","doi":"10.1109/IRANIANCEE.2012.6292517","DOIUrl":null,"url":null,"abstract":"In this paper we considered a non-redundant linear precoding blind channel estimation method for orthogonal frequency-division multiplexing (OFDM) system and proposed an improved algorithm to achieve better performance. A wide range of blind channel estimation methods are based on the covariance matrix of received symbols. In practice, the covariance matrix is unknown and must be estimated through time averaging over received OFDM blocks. To this end, the unknown channel must remain time invariant through the averaging process. Therefore the number of averaging steps is finite and the way of using the covariance matrix components is important in practical applications. In this paper, we propose a new algorithm by an efficient use of covariance matrix components. Simulation results show the proposed method improvement over the other blind estimation methods.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we considered a non-redundant linear precoding blind channel estimation method for orthogonal frequency-division multiplexing (OFDM) system and proposed an improved algorithm to achieve better performance. A wide range of blind channel estimation methods are based on the covariance matrix of received symbols. In practice, the covariance matrix is unknown and must be estimated through time averaging over received OFDM blocks. To this end, the unknown channel must remain time invariant through the averaging process. Therefore the number of averaging steps is finite and the way of using the covariance matrix components is important in practical applications. In this paper, we propose a new algorithm by an efficient use of covariance matrix components. Simulation results show the proposed method improvement over the other blind estimation methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于协方差矩阵的OFDM系统盲信道估计
本文研究了正交频分复用(OFDM)系统中的一种非冗余线性预编码盲信道估计方法,并提出了一种改进算法以获得更好的性能。各种盲信道估计方法都是基于接收信号的协方差矩阵。在实际中,协方差矩阵是未知的,必须通过对接收的OFDM块进行时间平均来估计。为此,未知信道必须在平均过程中保持时不变。因此,平均步数是有限的,使用协方差矩阵分量的方法在实际应用中很重要。本文提出了一种有效利用协方差矩阵分量的新算法。仿真结果表明,该方法比其他盲估计方法有较大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrical analysis of altitude estimation error caused by pixel quantization in stereo vision Time-domain MoM for the scattering analysis of thin-wire structures within a ground using band-limited Second-Order Lagrange temporal basis functions Variable-structure position control-a class of fast and robust controllers for synchronous reluctance motor drives Analysis of corona effect on lightning performance of HV overhead transmission line using ATP/EMTP Font recognition using Variogram fractal dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1