Blind separation of cyclostationary sources using non-orthogonal approximate joint diagonalization

N. Cheviet, M. El Badaoui, A. Belouchrani, F. Guillet
{"title":"Blind separation of cyclostationary sources using non-orthogonal approximate joint diagonalization","authors":"N. Cheviet, M. El Badaoui, A. Belouchrani, F. Guillet","doi":"10.1109/SAM.2008.4606919","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique for the blind separation of cyclostationary signals by exploiting the cyclostationary nonstochastic temporal-probability models (fraction on time FOT) for signals (time-series) with periodic structure. The proposed approach is based on the joint diagonalization nonorthogonal of a set of matrices which have the same structure, then it can be simultaneously separating all sources without any restrictions and distributions to the number of cyclic frequencies of each sources. Simulation results are provided to illustrate the effectiveness of the proposed approach.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a new technique for the blind separation of cyclostationary signals by exploiting the cyclostationary nonstochastic temporal-probability models (fraction on time FOT) for signals (time-series) with periodic structure. The proposed approach is based on the joint diagonalization nonorthogonal of a set of matrices which have the same structure, then it can be simultaneously separating all sources without any restrictions and distributions to the number of cyclic frequencies of each sources. Simulation results are provided to illustrate the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非正交近似联合对角化的环平稳源盲分离
本文利用周期结构信号(时间序列)的周期平稳非随机时间概率模型(时间分数FOT),提出了一种盲分离周期平稳信号的新方法。该方法基于一组具有相同结构的矩阵的联合对角化非正交性,可以同时分离所有源,而不受每个源的循环频率数的限制和分布。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1