Performance Modeling of Kaligawe Road in Semarang Using Markov Chains

Sulistyowati Sulistyowati, S. Soehartono
{"title":"Performance Modeling of Kaligawe Road in Semarang Using Markov Chains","authors":"Sulistyowati Sulistyowati, S. Soehartono","doi":"10.37760/neoteknika.v5i1.1382","DOIUrl":null,"url":null,"abstract":"here are two kinds of pavement performance modeling, deterministic and stochastic. Among the stochastic modeling, Markov Chains receives a considerable attention ( PerezAcebo et al. 2017 ). Modeling pavement performance using Markov Chains were about developing Transition Probability Matrix (TPM) and present state vector. A model then can be developed by multiplying these two factors. This paper aimed to model pavement performance of a rigid pavement road. The object was Kaligawe road. Kaligawe road is in the northern part of the city of Semarang. It is a 6 km long and 15 meter wide road, divided into two lanes. There were two pavement performance models in this paper; the first one compared the real IRI data and the predicted one. The second model predicted IRI values using July’17 IRI data for the next two cycle times. The first model suggested a new IRI data should be used if there was a Maintenance and Rehabilitation work (MR RigidPavement; MarkovChains","PeriodicalId":107838,"journal":{"name":"Neo Teknika","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neo Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37760/neoteknika.v5i1.1382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

here are two kinds of pavement performance modeling, deterministic and stochastic. Among the stochastic modeling, Markov Chains receives a considerable attention ( PerezAcebo et al. 2017 ). Modeling pavement performance using Markov Chains were about developing Transition Probability Matrix (TPM) and present state vector. A model then can be developed by multiplying these two factors. This paper aimed to model pavement performance of a rigid pavement road. The object was Kaligawe road. Kaligawe road is in the northern part of the city of Semarang. It is a 6 km long and 15 meter wide road, divided into two lanes. There were two pavement performance models in this paper; the first one compared the real IRI data and the predicted one. The second model predicted IRI values using July’17 IRI data for the next two cycle times. The first model suggested a new IRI data should be used if there was a Maintenance and Rehabilitation work (MR RigidPavement; MarkovChains
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫链的三宝垄卡利加威公路性能建模
这里有两种路面性能模型,确定性和随机。在随机建模中,马尔可夫链受到了相当大的关注(PerezAcebo et al. 2017)。利用马尔可夫链对路面性能进行建模,主要是建立转移概率矩阵和状态向量。然后可以通过将这两个因素相乘来开发模型。本文旨在对刚性路面的路面性能进行建模。目标是卡利加威路。卡利加威公路位于三宝垄市北部。这条路长6公里,宽15米,分为两车道。本文采用了两种路面性能模型;第一组比较了真实的IRI数据和预测的数据。第二个模型使用2017年7月的IRI数据预测接下来两个周期的IRI值。第一个模型建议,如果有维护和修复工作,应该使用新的IRI数据(MR RigidPavement;MarkovChains
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENERAPAN ALGORITMA DECISION TREE ID3 UNTUK PREDIKSI KELULUSAN MAHASISWA JENJANG PENDIDIKAN D3 DI FAKULTAS TEKNIK UNIVERSITAS PANDANARAN ANALISIS KONSULTAN MANAJEMEN KONSTRUKSI TERHADAP PENERAPAN MANAJEMEN WAKTU PADA PEMBANGUNAN RUMAH SAKIT DI JAWA TENGAH KOMPARASI METODE KLASIFIKASI DATA MINING UNTUK PREDIKSI KELULUSAN MAHASISWA Performance Modeling of Kaligawe Road in Semarang Using Markov Chains “RENCANA STRATEGI BENDUNG KARET BERISI AIR SEBAGAI INOVASI TEPAT GUNA DALAM PENANGGULANGAN BANJIR DAN ROB“
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1