Understanding Geometry for Point Cloud Segmentation via Covariance

Jiaping Qin, Jing-yu Gong, Zhengyang Feng, Xin Tan, Lizhuang Ma
{"title":"Understanding Geometry for Point Cloud Segmentation via Covariance","authors":"Jiaping Qin, Jing-yu Gong, Zhengyang Feng, Xin Tan, Lizhuang Ma","doi":"10.1109/CISP-BMEI56279.2022.9979883","DOIUrl":null,"url":null,"abstract":"Geometry plays a vital role in 3D point cloud semantic segmentation since each category of object exhibits a specific geometric pattern. However, popular point cloud semantic segmentation methods ignore this property during feature aggregation. In this paper, we propose a novel Covariance-based Geometry Encoder (CGE) to learn latent geometry representation in point clouds and break this limitation. Specifically, we find that the classic covariance matrix can represent geometry implicitly in a point neighborhood, and we can learn geometry representation through simple multi-layer perceptrons to enhance the point features in a deep network. The proposed CGE module is generally applicable to any point-based network, while only requiring a little extra computing. Through extensive experiments, our method shows competitive performance on both indoor and outdoor benchmark datasets. Code will be publicly available.","PeriodicalId":198522,"journal":{"name":"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI56279.2022.9979883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Geometry plays a vital role in 3D point cloud semantic segmentation since each category of object exhibits a specific geometric pattern. However, popular point cloud semantic segmentation methods ignore this property during feature aggregation. In this paper, we propose a novel Covariance-based Geometry Encoder (CGE) to learn latent geometry representation in point clouds and break this limitation. Specifically, we find that the classic covariance matrix can represent geometry implicitly in a point neighborhood, and we can learn geometry representation through simple multi-layer perceptrons to enhance the point features in a deep network. The proposed CGE module is generally applicable to any point-based network, while only requiring a little extra computing. Through extensive experiments, our method shows competitive performance on both indoor and outdoor benchmark datasets. Code will be publicly available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理解几何点云分割通过协方差
几何在三维点云语义分割中起着至关重要的作用,因为每一类物体都具有特定的几何模式。然而,常用的点云语义分割方法在特征聚合过程中忽略了这一特性。在本文中,我们提出了一种新的基于协方差的几何编码器(CGE)来学习点云中的潜在几何表示,并打破了这一限制。具体来说,我们发现经典的协方差矩阵可以隐式地表示点邻域的几何形状,并且我们可以通过简单的多层感知器来学习几何形状的表示,以增强深度网络中的点特征。所提出的CGE模块一般适用于任何基于点的网络,而只需要少量的额外计算。通过大量的实验,我们的方法在室内和室外基准数据集上都显示出具有竞争力的性能。代码将是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Point Cloud Registration based Track Correlation Method An End-to-end Image Feature Representation Model of Pulmonary Nodules Vision-Guided Speaker Embedding Based Speech Separation Analysis and Simulation of Interference Effects on CSK Modulation Systems Sentiment Analysis Based On Deep Residual Bidirectional Gated Recurrent Unit Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1