Feature Extraction and Interval Filtering Technique for Time-series Forecasting Using Neural Networks

W. Wettayaprasit, P. Nanakorn
{"title":"Feature Extraction and Interval Filtering Technique for Time-series Forecasting Using Neural Networks","authors":"W. Wettayaprasit, P. Nanakorn","doi":"10.1109/ICCIS.2006.252344","DOIUrl":null,"url":null,"abstract":"This paper presents the algorithm for feature extraction and interval filtering technique for time-series forecasting using multilayer perceptron neural networks. The algorithm has four parts. The first part is data filtering and interval process. The second part is input feature extraction process from neural networks. The third part is time-series input variables forecasting process. The fourth part is time-series rainfall forecast process. The study uses weather data from the Meteorological Department of Thailand and the United States of America. The experimental results for rainfall forecast receive high accuracy comparing with other methods","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents the algorithm for feature extraction and interval filtering technique for time-series forecasting using multilayer perceptron neural networks. The algorithm has four parts. The first part is data filtering and interval process. The second part is input feature extraction process from neural networks. The third part is time-series input variables forecasting process. The fourth part is time-series rainfall forecast process. The study uses weather data from the Meteorological Department of Thailand and the United States of America. The experimental results for rainfall forecast receive high accuracy comparing with other methods
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络时间序列预测的特征提取和区间滤波技术
本文提出了基于多层感知器神经网络的时间序列预测的特征提取和区间滤波算法。该算法分为四个部分。第一部分是数据过滤和区间处理。第二部分是神经网络的输入特征提取过程。第三部分是时间序列输入变量预测过程。第四部分是时序降水预报过程。这项研究使用了泰国气象部门和美国的气象数据。与其他预报方法相比,试验结果具有较高的预报精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1