Improved TiO2 TEAM Model Using a New Window Function

F. Zayer, W. Dghais, B. Hamdi
{"title":"Improved TiO2 TEAM Model Using a New Window Function","authors":"F. Zayer, W. Dghais, B. Hamdi","doi":"10.1109/ICM.2018.8704104","DOIUrl":null,"url":null,"abstract":"This paper presents an extension of the threshold adaptive memristor (TEAM) model, which is derived based on the analysis of the physical tunnel barrier memristor (TBM) model. A novel window function is proposed in order to ensure the effective resolution of the boundary conditions, full scalability, and accurate imitation of the nonlinear dependence on the state dynamics of the TEAM model. A comparison with some existing nonlinear window functions is described. The achieved validation results of the enhanced TiO2 TEAM model show an improved simulation runtime by 25.3% and maintain a good prediction accuracy with a mean error of 0.1%.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an extension of the threshold adaptive memristor (TEAM) model, which is derived based on the analysis of the physical tunnel barrier memristor (TBM) model. A novel window function is proposed in order to ensure the effective resolution of the boundary conditions, full scalability, and accurate imitation of the nonlinear dependence on the state dynamics of the TEAM model. A comparison with some existing nonlinear window functions is described. The achieved validation results of the enhanced TiO2 TEAM model show an improved simulation runtime by 25.3% and maintain a good prediction accuracy with a mean error of 0.1%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新窗口函数改进TiO2 TEAM模型
本文在分析物理隧道势垒忆阻器模型的基础上,对阈值自适应忆阻器(TEAM)模型进行了扩展。为了保证边界条件的有效分辨、充分的可扩展性和对TEAM模型状态动力学非线性依赖的准确模仿,提出了一种新的窗口函数。并与现有的非线性窗函数进行了比较。改进后的TiO2 TEAM模型的验证结果表明,该模型的仿真运行时间提高了25.3%,并保持了较好的预测精度,平均误差为0.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Deep Neural Networks Using FPGA On-body Investigation of Textile Antenna for Wearable RFID Applications Multi-Bit RRAM Transient Modelling and Analysis DEMO: Multi-Grain Adaptivity in Cyber-Physical Systems Compartive study of MPPT methods for PV systems : Case of Moroccan house
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1