Electric fields in Scanning Electron Microscopy simulations

K. Arat, J. Bolten, T. Klimpel, N. Unal
{"title":"Electric fields in Scanning Electron Microscopy simulations","authors":"K. Arat, J. Bolten, T. Klimpel, N. Unal","doi":"10.1117/12.2219182","DOIUrl":null,"url":null,"abstract":"The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10−6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2219182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10−6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扫描电子显微镜模拟中的电场
利用快速、精确的多网格三维电场求解器对基于蒙特卡罗的扫描电子显微镜(SEM)模拟器进行扩展,研究了扫描电子显微镜(SEM)中的电场分布和电荷效应。主要的重点是使模拟时间短,保持足够的精度,使SEM模拟可以在实际应用中使用。与基于Gauss-Seidel的参考求解器相比,该实现在计算速度上获得了大约40倍的增益,而结果的差异可以忽略不计(~10−6)。此外,将模拟结果与同样复杂3D样品的实验SEM测量结果进行了比较,结果表明:1)电场建模提高了模拟精度;2)多网格方法在模拟时间方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SEM based overlay measurement between resist and buried patterns Contrast optimization for 0.33NA EUV lithography Analysis of wafer heating in 14nm DUV layers GPU accelerated Monte-Carlo simulation of SEM images for metrology Lensless hyperspectral spectromicroscopy with a tabletop extreme-ultraviolet source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1