MBET: Resilience Improvement Method for DNNs

Abdullah Murat Buldu, A. Sen, Karthik Swaminathan, B. Kahne
{"title":"MBET: Resilience Improvement Method for DNNs","authors":"Abdullah Murat Buldu, A. Sen, Karthik Swaminathan, B. Kahne","doi":"10.1109/AITest55621.2022.00019","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) accelerators become a large study field. Low voltage DNN accelerators are designed to achieve high throughput and reduce energy consumption. Using low voltage leads to many bit errors in DNN weights. One method to increase fault tolerance against random bit errors is random bit error training. In this paper, we improve this method with multiple bit error rate training (MBET). MBET aims to improve the fault tolerance of the DNN model with using more than one bit error rates. During the training, we inject bit errors with different rates and combine the corresponding loss values. The experimental results on 4 state-of-the-art models show that this method improves fault tolerance of the model against random bit errors while it does not decrease the test accuracy of the model.","PeriodicalId":427386,"journal":{"name":"2022 IEEE International Conference On Artificial Intelligence Testing (AITest)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference On Artificial Intelligence Testing (AITest)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AITest55621.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep neural network (DNN) accelerators become a large study field. Low voltage DNN accelerators are designed to achieve high throughput and reduce energy consumption. Using low voltage leads to many bit errors in DNN weights. One method to increase fault tolerance against random bit errors is random bit error training. In this paper, we improve this method with multiple bit error rate training (MBET). MBET aims to improve the fault tolerance of the DNN model with using more than one bit error rates. During the training, we inject bit errors with different rates and combine the corresponding loss values. The experimental results on 4 state-of-the-art models show that this method improves fault tolerance of the model against random bit errors while it does not decrease the test accuracy of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MBET: dnn的弹性改进方法
深度神经网络(DNN)加速器成为一个重要的研究领域。低电压DNN加速器旨在实现高吞吐量和降低能耗。使用低电压会导致深度神经网络权重出现很多位误差。提高随机误码容错性的一种方法是随机误码训练。本文采用多误码率训练(MBET)对该方法进行改进。MBET的目的是提高DNN模型的容错率,使用一个以上的误码率。在训练过程中,我们注入不同速率的误码,并结合相应的损失值。在4个最先进的模型上的实验结果表明,该方法提高了模型对随机比特错误的容错性,同时不降低模型的测试精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anomalous Anomaly Detection Metrics for Measuring Error Extents of Machine Learning Classifiers Original Music Generation using Recurrent Neural Networks with Self-Attention MBET: Resilience Improvement Method for DNNs A Passive Testing Approach using a Semi-Supervised Intrusion Detection Model for SCADA Network Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1