Coordinated standoff tracking of in- and out-of-surveillance targets using constrained particle filter for UAVs

H. Oh, Cunjia Liu, Seungkeun Kim, Hyo-Sang Shin, Wen‐Hua Chen
{"title":"Coordinated standoff tracking of in- and out-of-surveillance targets using constrained particle filter for UAVs","authors":"H. Oh, Cunjia Liu, Seungkeun Kim, Hyo-Sang Shin, Wen‐Hua Chen","doi":"10.1109/IVS.2015.7225734","DOIUrl":null,"url":null,"abstract":"This paper presents a new standoff tracking framework of a moving ground target using UAVs with a limited sensing capability such as sensor field-of-view and motion constraints. To maintain persistent track of the target even in case of target loss (out of surveillance) for a certain period, this study predicts the target existence area using the particle filter, and produces control commands to ensure that all predicted particles can be covered by the field-of-view of the UAV sensor at all times. To improve target prediction/estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as nonlinear inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control methods are applied for the standoff tracking and phase angle control, and the advantages and disadvantages of them are compared using numerical simulation results.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new standoff tracking framework of a moving ground target using UAVs with a limited sensing capability such as sensor field-of-view and motion constraints. To maintain persistent track of the target even in case of target loss (out of surveillance) for a certain period, this study predicts the target existence area using the particle filter, and produces control commands to ensure that all predicted particles can be covered by the field-of-view of the UAV sensor at all times. To improve target prediction/estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as nonlinear inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control methods are applied for the standoff tracking and phase angle control, and the advantages and disadvantages of them are compared using numerical simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束粒子滤波的无人机监视内外目标协调对峙跟踪
本文提出了一种利用传感器视场和运动约束等传感能力有限的无人机对移动地面目标进行对峙跟踪的新框架。为了在目标丢失(脱离监视)一段时间内保持对目标的持续跟踪,本研究利用粒子滤波对目标存在区域进行预测,并生成控制命令,保证所有预测的粒子始终被无人机传感器的视场覆盖。为了提高目标的预测/估计精度,将道路信息纳入约束粒子滤波中,其中道路边界建模为非线性不等式约束。采用李雅普诺夫矢量场制导和非线性模型预测控制两种方法进行了对峙跟踪和相角控制,并通过数值仿真结果比较了两种方法的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal parameter selection of a Model Predictive Control algorithm for energy efficient driving of heavy duty vehicles Map free lane following based on low-cost laser scanner for near future autonomous service vehicle Real-time small obstacle detection on highways using compressive RBM road reconstruction Developing a framework of Eco-Approach and Departure application for actuated signal control Face orientation estimation for driver monitoring with a single depth camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1