A neural network model applied to the detection of digital signals

Marcelo A. C. Fernandes, A. Neto, J. B. Bezerra
{"title":"A neural network model applied to the detection of digital signals","authors":"Marcelo A. C. Fernandes, A. Neto, J. B. Bezerra","doi":"10.1109/ITS.1998.713132","DOIUrl":null,"url":null,"abstract":"This work presents an artificial neural network (ANN) approach for the signal decision problems associated with digital communication system receivers which use modulation schemes whose signal elements belong to finite bidimensional constellations. The decision system proposed, named a neural decoder (ND), is a multilayer perceptron neural network trained with a backpropagation algorithm and models a maximum-likelihood receiver. The ND training process and simulation results of their performance, regarding a conventional receiver, are presented for some of the modulation systems studied.","PeriodicalId":205350,"journal":{"name":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.1998.713132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work presents an artificial neural network (ANN) approach for the signal decision problems associated with digital communication system receivers which use modulation schemes whose signal elements belong to finite bidimensional constellations. The decision system proposed, named a neural decoder (ND), is a multilayer perceptron neural network trained with a backpropagation algorithm and models a maximum-likelihood receiver. The ND training process and simulation results of their performance, regarding a conventional receiver, are presented for some of the modulation systems studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于数字信号检测的神经网络模型
本文提出了一种人工神经网络(ANN)方法来解决与数字通信系统接收机相关的信号决策问题,这些接收机使用的调制方案的信号元素属于有限的二维星座。该决策系统被命名为神经解码器(neural decoder, ND),它是一个多层感知器神经网络,采用反向传播算法进行训练,并对最大似然接收器进行建模。本文给出了一些调制系统在传统接收机上的ND训练过程及其性能的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A coded modulation scheme for a broadcast AWGN channel Saving time and reducing network traffic with a graphical mobile agent inception system Novel robust RM-KNN filters with impulsive noise suppression for image processing Implementing a distributed Web-based management system in Java On bandwidth efficiency of BCM applied to non-square M-QAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1