Watershed Segmentation Using a Multiscale Ramp Edge Merging Strategy

P. Corcoran, A. Winstanley
{"title":"Watershed Segmentation Using a Multiscale Ramp Edge Merging Strategy","authors":"P. Corcoran, A. Winstanley","doi":"10.1109/IMVIP.2007.45","DOIUrl":null,"url":null,"abstract":"For the watershed segmentation algorithm to be successful it must be implemented on a realistic gradient image. In most watershed implementations, gradients are extracted using an operator optimal for ideal step edges. However, image edges are never ideal steps and more closely resemble ramp edges at multiple scales. Therefore this strategy results in an inaccurate measure of image gradients and in turn lessens segmentation performance. In this paper we propose a new multiscale gradient operator for ramp edges. This strategy merges the properties of accurate gradient estimation of a large scale kernel with accurate localization of a small scale kernel by tracking gradients from larger to smaller scales. Quantitative performance evaluation of segmentation results shows this approach to outperform a traditional single small scale gradient operator optimal for step edges.","PeriodicalId":249544,"journal":{"name":"International Machine Vision and Image Processing Conference (IMVIP 2007)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Machine Vision and Image Processing Conference (IMVIP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2007.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For the watershed segmentation algorithm to be successful it must be implemented on a realistic gradient image. In most watershed implementations, gradients are extracted using an operator optimal for ideal step edges. However, image edges are never ideal steps and more closely resemble ramp edges at multiple scales. Therefore this strategy results in an inaccurate measure of image gradients and in turn lessens segmentation performance. In this paper we propose a new multiscale gradient operator for ramp edges. This strategy merges the properties of accurate gradient estimation of a large scale kernel with accurate localization of a small scale kernel by tracking gradients from larger to smaller scales. Quantitative performance evaluation of segmentation results shows this approach to outperform a traditional single small scale gradient operator optimal for step edges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度斜坡边缘合并策略的分水岭分割
分水岭分割算法要想成功,必须在真实的梯度图像上实现。在大多数分水岭实现中,梯度是使用最优的算子来提取的。然而,图像边缘从来都不是理想的台阶,在多个尺度上更接近斜坡边缘。因此,这种策略导致图像梯度测量不准确,从而降低了分割性能。本文提出了一种新的斜坡边多尺度梯度算子。该策略通过从大尺度到小尺度的梯度跟踪,将大尺度核的精确梯度估计与小尺度核的精确定位相结合。对分割结果的定量性能评价表明,该方法优于传统的单一小尺度梯度算子对阶跃边缘的最优分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Logic Based Segmentation of Microcalcification in Breast Using Digital Mammograms Considering Multiresolution Near-Circular Corner and Edge Detection Operators Recognition of Unstained Live Drosophila Cells in Microscope Images Video Object Motion Segmentation for Intelligent Visual Surveillance Speckle reduction using the discrete Fourier filtering technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1