Genetic Evolution of a Neural Network for the Autonomous Control of a Four-Wheeled Robot

W. Elmenreich, G. Klingler
{"title":"Genetic Evolution of a Neural Network for the Autonomous Control of a Four-Wheeled Robot","authors":"W. Elmenreich, G. Klingler","doi":"10.1109/MICAI.2007.13","DOIUrl":null,"url":null,"abstract":"In this paper we exercise the genetic programming of a artificial neural network (ANN) that integrates sensor vision, path planning and steering control of a mobile robot. The training of the ANN is done by a simulation of the robot, its sensors, and environment. The results of each simulation run are then used to denote the ability for the tested network to operate the robot. After less than hundred evaluations we receive an ANN that is able to navigate the robot around obstacles better than a traditional implementation of sensor-based vision and navigation for the same robot.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper we exercise the genetic programming of a artificial neural network (ANN) that integrates sensor vision, path planning and steering control of a mobile robot. The training of the ANN is done by a simulation of the robot, its sensors, and environment. The results of each simulation run are then used to denote the ability for the tested network to operate the robot. After less than hundred evaluations we receive an ANN that is able to navigate the robot around obstacles better than a traditional implementation of sensor-based vision and navigation for the same robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四轮机器人自主控制神经网络的遗传进化
本文对移动机器人的传感器视觉、路径规划和转向控制集成在一起的人工神经网络(ANN)进行遗传规划。人工神经网络的训练是通过模拟机器人、传感器和环境来完成的。每次模拟运行的结果用来表示被测网络操作机器人的能力。经过不到一百次的评估,我们得到了一个人工神经网络,它能够比传统的基于传感器的视觉和导航机器人更好地引导机器人绕过障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Tools to Time Series Forecasting Algorithm for Affective Pattern Recognition by Means of Use of First Initial Momentum Uncertain Reasoning in Multi-agent Ontology Mapping on the Semantic Web Segmentation and Extraction of Morphologic Features from Capillary Images An Intelligent Agent Using a Q-Learning Method to Allocate Replicated Data in a Distributed Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1