Graph Templates for Dataflow Programming

A. Sena, Eduardo S. Vaz, F. França, L. A. J. Marzulo, Tiago A. O. Alves
{"title":"Graph Templates for Dataflow Programming","authors":"A. Sena, Eduardo S. Vaz, F. França, L. A. J. Marzulo, Tiago A. O. Alves","doi":"10.1109/SBAC-PADW.2015.20","DOIUrl":null,"url":null,"abstract":"Current works on parallel programming models are trending towards the dataflow paradigm, which naturally exploits parallelism in programs. The Sucuri Python Library provides basic features for creation and execution of dataflow graphs in parallel environments. However, there is still a gap between dataflow programming and traditional parallel programming. In this paper we aim at narrowing that gap by introducing a set of templates for Sucuri that represent some of the most important parallel programming patterns. Through these templates programmers can implement applications that use patterns such as fork/join, pipeline and wave front just by instantiating and connecting sub-graph objects. Evaluation showed that the use of templates makes programming easier, while allowing a significant reduction in lines of code, compared to manually creating the dataflow graph.","PeriodicalId":161685,"journal":{"name":"2015 International Symposium on Computer Architecture and High Performance Computing Workshop (SBAC-PADW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Computer Architecture and High Performance Computing Workshop (SBAC-PADW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PADW.2015.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Current works on parallel programming models are trending towards the dataflow paradigm, which naturally exploits parallelism in programs. The Sucuri Python Library provides basic features for creation and execution of dataflow graphs in parallel environments. However, there is still a gap between dataflow programming and traditional parallel programming. In this paper we aim at narrowing that gap by introducing a set of templates for Sucuri that represent some of the most important parallel programming patterns. Through these templates programmers can implement applications that use patterns such as fork/join, pipeline and wave front just by instantiating and connecting sub-graph objects. Evaluation showed that the use of templates makes programming easier, while allowing a significant reduction in lines of code, compared to manually creating the dataflow graph.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据流编程的图形模板
当前关于并行编程模型的工作倾向于数据流范式,它自然地利用了程序中的并行性。Sucuri Python库提供了在并行环境中创建和执行数据流图的基本特性。然而,数据流编程与传统的并行编程之间仍然存在差距。在本文中,我们旨在通过为Sucuri引入一组模板来缩小这一差距,这些模板代表了一些最重要的并行编程模式。通过这些模板,程序员可以通过实例化和连接子图对象来实现使用fork/join、pipeline和wave front等模式的应用程序。评估表明,与手动创建数据流图相比,使用模板使编程更容易,同时大大减少了代码行数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoBaS: Introducing a Component Based Scheduling Framework Impact of Version Management on Transactional Memories' Performance Single-Loop Approach to 2-D Wavelet Lifting with JPEG 2000 Compatibility Graph Templates for Dataflow Programming Energy Consumption and Scalability Evaluation for Software Transactional Memory on a Real Computing Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1